
Improving Arc-Consistency Algorithms with

Double-Support Checks

M.R.C. van Dongen and J.A. Bowen

Computer Science Department

University College Cork, Ireland

August, 2000

Abstract

Arc-consistency algorithms are widely used to simplify Constraint Satisfaction Prob-

lems. The new notion of a double-support check is presented to improve the average perfor-

mance of arc-consistency algorithms. The improvement is that, where possible, consistency-

checks are used to find supports for two values, one value in the domain of each variable,

which were previously known to be unsupported. It is motivated by the insight that in

order to minimize the number of consistency-checks it is necessary to maximize the number

of uncertainties which are resolved per check. The idea is used to improve AC-3 and DEE

and results in a new general purpose arc-consistency algorithm called AC-3b. Experimental

results of a comparison of AC-3, DEE, AC-3b and AC-7 are presented. The results seem

to indicate that AC-3b always performs better than DEE and usually performs better than

both AC-3 and AC-7 for the set of testproblems under consideration.

1 Introduction

Arc-consistency algorithms are widely used to reduce the search-space of Constraint Satisfaction

Problems (CSPs). In this paper the notion of a double-support check is presented to improve

the average performance of arc-consistency algorithms. The improvement is that, where pos-

sible, consistency-checks are used to find supports for two values, one in the domain of each

variable, which were previously known to be unsupported. It is motivated by the insight that

in order to minimize the number of consistency-checks it is necessary to maximize the number

of uncertainties which are resolved per check. The idea is used to improve AC-3 and DEE and

results in a new general purpose arc-consistency algorithm called AC-3b. Experimental results

of a comparison of AC-3, DEE, AC-3b and AC-7 are presented. The results seem to indicate

that AC-3b always performs better than DEE and usually performs better than both AC-3 and

AC-7 for the set of testproblems under consideration.

1

The rest of this paper is organised as follows; in Section 2 some concepts used in the Con-

straint Satisfaction literature are recalled. Related work is discussed in Section 3. Section 4

presents the notion of double-support check. AC-3b is described in Section 5. Experimental

results are presented and discussed in Section 6. Finally, in Section 7, conclusions are presented

and further research is discussed.

2 Constraint Satisfaction Theory

This section is an introduction to some basic terminology used in the Constraint Satisfaction

literature and the rest of this paper. Section 2.1 is an introduction to some general Constraint

Satisfaction terminology. In Section 2.2 the main concepts of arc-consistency are laid out.

2.1 Constraint Satisfaction

CSPs are triples (V,D,C), where V is a set containing the variables of the CSPs, D is a set

containing the domains of the variables of the CSPs, and C is a set containing the constraints

of the CSPs. The domain of variable k is denoted by Dk. Only binary CSPs are considered,

i.e. CSPs where the arity of the constraints is at most 2.

A binary constraint Cij ⊆ Di × Dj on variables i and j is a set of pairs. The pairs in the

constraint represent the only combinations of values the variables can take. Cij allows for i to

take the value vi and j to take the value vj iff (vi, vj) ∈ Cij. Likewise, a unary constraint is a

set of individual values. A member of a constraint is said to satisfy the constraint.

A CSP is called node-consistent iff, for each variable i, either Ci 6∈ C or each value in its

domain satisfies Ci. Without loss of generality only node-consistent CSPs are considered. Also

it is assumed that (∀i ∈ V)(Di 6= ∅). A test of the form vi ∈ Ci or (vi, vj) ∈ Cij is called a

consistency-check.

Associated with a binary CSP is its directed constraint graph with nodes corresponding to

the variables, and arcs corresponding to the constraints in the CSP. For every unary constraint

Ci an arc (i, i) exists. For every binary constraint Cij, two directed arcs (i, j) and (j, i) exist.

Two distinct variables i and j in a CSP are called neighbours if Cij ∈ C. A CSP is called

connected if its constraint graph is connected.

An algorithm is called bi-directional if it exploits the general property of binary relations

that (vi, vj) ∈ Cij ⇐⇒ (vj, vi) ∈ Cji for any vi ∈ Di, any vj ∈ Dj and any Cij ∈ C [1].

2.2 Arc-Consistency

Let i and j be variables, vi ∈ Di and vj ∈ Dj; then j = vj supports i = vi if (vi, vj) ∈ Cij. In

addition i = vi is said to be supported by j if there is some vj ∈ Dj s.t. j = vj supports i = vi.

Given the notion of support, a connected CSP is called arc-consistent iff every value in the

domain of every variable is supported by all the neighbours of that variable.

2

A CSP is called inconsistent if it has no solutions. Arc-consistency algorithms remove all

unsupported values from the domains of variables, or decide that a CSP is inconsistent by

finding that some variable has no supported values in its domain.

3 Related Work

This Section describes some related work on general purpose arc-consistency algorithms. Here,

by general purpose algorithm, is meant an algorithm which can be applied to any CSP.

One of the earliest algorithms is Mackworth’s AC-3 [3]. It has a time-complexity of O(ed3)

and a space-complexity of O(e + nd) [4, 5]. As usual n denotes the number of variables in the

CSP, e denotes the number of binary-constraints and d denotes the maximum domain-size.

J. Gaschnig describes a related algorithm called DEE in [2]. DEE differs from AC-3 in that,

in essence, whereas AC-3 processes only one arc (i, j) at a time, DEE processes both (i, j) and

(j, i) at the same time.

A bi-directional arc-consistency algorithm called AC-7 has been presented in [1]. AC-7 has

a O(ed) space-complexity, optimal O(ed2) time-complexity and, if AC-3 and AC-7 are both

implemented with the usual lexicographic heuristics, never performs worse than AC-3.

4 Double-Support Checks

This section describes the notion of a double-support check. Consider the micro-structure of

the 2-variable CSP in Figure 1. If a heuristic of lexicographically ordering the data-structures

in AC-3, DEE, and AC-7 is assumed, then AC-7 would need 11 consistency-checks in order

to decide that 4 has to be removed from DA. DEE would also need 11 consistency-checks in

order to transform this CSP into its arc-consistent equivalent. For AC-3 this number would

be 17. One of the reasons why AC-3 needs far more consistency-checks than DEE and AC-7

is because AC-3 does not exploit the fact that relations are bi-directional. Bi-directionality is

used by DEE, because while it is constructing a support for A, each value in DB which is found

to support a value in DA is marked. It then tries to determine which values in DB are supported

by A but will not try to find a support for those values in DB which are marked because they

are already known to be supported. Bi-directionality is exploited by AC-7 because it never tests

for (b, a) ∈ Cji if it already has checked (a, b) ∈ Cij, and vice versa.

1 2

1 2 3

3 4

4

A

B

Figure 1: 2-Variable CSP

3

But even for 2-variable CSPs and the heuristic mentioned above, DEE and AC-7 do too

much work. For example, after AC-7 has established that B = 1 supports A = 1, the first thing

it will do in order to find a support for A = 2 is to try to find it with B = 1. As shown below, it

would be better to postpone this, because a support for A = 2 may be found elsewhere in DB,

thus allowing for the possibility of two values to be added to those values which are known to

be supported, as opposed to only one. The basic idea presented in this paper is the insight that

in order to minimize the number of consistency-checks it is necessary to maximize the number

of uncertainties that are resolved per check.

The objective of arc-consistency processing is to resolve some uncertainty; it has to be known,

for each vA ∈ DA and for each vB ∈ DB, whether it is supported. Consistency-checks are

performed to resolve these uncertainties. A single-support check, (vA, vB) ∈ CAB, is one in

which, before the check is done, it is already known that either vA or vB are supported. A double-

support check, (vA, vB) ∈ CAB, is one in which there is still, before the check, uncertainty about

the support-status of both vA and vB. If a double-support check is successful, two uncertainties

are resolved. If a single-support check is successful, only one uncertainty is resolved. A good arc-

consistency algorithm, therefore, would always choose to do a double-support check in preference

of a single-support check, because the former offers the potential higher payback.

At any stage in the process of making the 2-variable CSP arc-consistent:

• There is a set S+
A ⊆ DA whose values are all known to be supported by B;

• There is a set S?
A = DA \ S+

A whose values are unknown, as yet, to be supported by B.

The same holds if the roles for A and B are exchanged. In order to establish support for a

value v?
A ∈ S?

A it seems better to try to find a support among the values in S?
B first, because

for each v?
B ∈ S?

B the check (v?
A, v

?
B) ∈ CAB is a double-support check and it is just as likely

that any v?
B ∈ S?

B supports v?
A than it is that any v+

B ∈ S+
B does. Only if no support can be

found among the elements in S?
B, should the elements v+

B in S+
B be used for single-support checks

(v?
A, v

+
B) ∈ CAB. After it has been decided for each value in DA whether it is supported or not,

either S+
A = ∅ and the 2-variable CSP is inconsistent, or S+

A 6= ∅ and the CSP is satisfiable. In

the latter case, the elements from DA which are supported by B are given by S+
A . The elements

in DB which are supported by A are given by the union of S+
B with the set of those elements of

S?
B which further processing will show to be supported by some v+

A ∈ S
+
A .

Applying the procedure as sketched above1 to the example from Figure 1 would lead to

a saving of consistency-checks when compared to DEE and AC-7. Instead of the 11 checks

needed by AC-7, only the following eight checks would be needed: (1, 1) ∈ CAB, (2, 2) ∈ CAB,

(3, 3) ∈ CAB, (4, 4) ∈ CAB, (4, 1) ∈ CAB, (4, 2) ∈ CAB, (4, 3) ∈ CAB, and finally (4, 1) ∈ CBA.

1Again a lexicographical ordering is assumed.

4

Q← {(i, j) ∈ G|i 6= j};
D′ ← copy(D);

while Q 6= ∅ do begin

select and remove any (i, j) from Q;

(S+
i , S

+
j , S

?
j)← partition(D′i, D

′
j , Cij);

if S+
i = ∅ then return (wipeout, ∅);

if D′i \ S
+
i 6= ∅ then begin

replace D′i in D′ by S+
i ;

Q← Q ∪ {(k, i) ∈ G|k 6= i, k 6= j};
end

if (j, i) ∈ Q then begin

remove (j, i) from Q;

S+
j ← S+

j ∪ {vj ∈ S
?
j |∃vi ∈ S

+
i s.t.(vi, vj) ∈ Cij};

if D′j \ S
+
j 6= ∅ then begin

replace D′j in D′ by S+
j ;

Q← Q ∪ {(k, j) ∈ G|k 6= i, k 6= j};
end

end

end

return (consistent, D′);

Figure 2: The AC-3b Algorithm

It is not difficult to find an example where this approach would lead to more consistency-

checks than with AC-7, DEE or AC-3. For a random 2-variable CSP, however, the proposed

method is more likely to lead to less consistency-checks. The crucial insight is that maximizing

the number of successful double-support checks is a prerequisite to minimizing the total number

of consistency-checks. The results in Section 6 seem to support this.

5 The AC-3b Algorithm

Motivated by the observations in Section 4, a new arc-consistency algorithm called AC-3b is

presented. The algorithm is depicted in Figures 2 and 3. The input to the AC-3b algorithm

consists of the directed constraint graph G of the CSP, the set D of the domains of the variables

in the CSP and the constraints C of the CSP. Its output is either (wipeout, ∅) if the CPS is

arc-inconsistent or (consistent, D′) otherwise, where D′ is the arc-consistent equivalent of D.

As shown in Figure 2 AC-3 uses a function called partition. This function is shown in

Figure 3. Its input consist of the domains Di and Dj and the constraint Cij. Its output consists

of a tuple (S+
i , S

+
j , S

?
j) s.t. S+

j ⊆ Dj, S
?
j = Dj \ S+

j and in addition:

S+
i = {vi ∈ Di|(∃vj ∈ Dj)((vi, vj) ∈ Cij)}

∧ S+
i = {vi ∈ Di|(∃vj ∈ S+

j)((vi, vj) ∈ Cij)}

∧ S+
j ⊆ {vj ∈ Dj|(∃vi ∈ S+

i)((vi, vj) ∈ Cij)}

These rules express the fact that S+
i is the set of all values in Di which are supported by Dj,

that each of its members is supported by some value of S+
j as well and that S+

j does not contain

values which are not supported by S+
i .

5

S?
i ← Di;

S+
i ← ∅;
S?
j ← Dj ;

S+
j ← ∅;

while S?
i 6= ∅ do begin

select and remove any v?
i from S?

i ;

if ∃v?
j ∈ S?

j s.t. (v?
i , v

?
j) ∈ Cij then begin

select and remove any such v?
j from S?

j ;

S+
i ← S+

i ∪ {v
?
i };

S+
j ← S+

j ∪ {v
?
j};

end

if ∃v+
j ∈ S

+
j s.t. (v?

i , v
+
j) ∈ Cij then S+

i ← S+
i ∪ {v

?
i };

end

return (S+
i , S

+
j , S

?
j);

Figure 3: The partition Algorithm

For the AC-3b algorithm it is assumed that the input-CSP is already node-consistent. AC-3b

is a refinement of the AC-3 algorithm as described in [3] and DEE as described in [2]. Compared

with AC-3 the refinement consists of the fact that if, when arc (i, j) is being processed and the

reverse arc (j, i) is also in the queue, then consistency-checks can be saved because only support

for the elements in S?
j has to be found (as opposed to support for all the elements in Dj in the

AC-3 algorithm). Compared with DEE the refinement consists of the double-support heuristic.

AC-3b inherits all its properties like O(ed3) time-complexity and O(e+nd) space complexity

from AC-3. The reader is referred to [7] for proof.

6 Experimental Results

In this Section experimental results are presented to enable comparisons between AC-3, DEE,

AC-7 and AC-3b. In Section 6.1 the experiments and implementation of the algorithms are

described. In Section 6.2 the results are discussed. Throughout this section, #cc(X) denotes

the (average) number of consistency-checks performed by algorithm X.

6.1 Description of the Experiment

In order to compare the arc-consistency efficiency of AC-3, DEE, AC-7 and AC-3b 30,420

random connected CSPs were generated. For each combination of (density,average tightness)

in {(0.025 ∗ d, 0.025 ∗ t)|t ∈ {1, 2, . . . 39}, d ∈ {1, 2, . . . 39}}, twenty random connected CSPs

were generated. Here, the density of a connected binary constraint-network is defined to be

2 × (e − n + 1)/(n2 − 3n + 2), where n is the number of variables in the CSP and e is the

number of edges in the constraint-graph [6]. The tightness of a constraint CAB is defined to be

1− |CAB|/(|DA| × |DB|). The average tightness of a binary constraint-network is the average of

the tightnesses of the binary constraints [6]. The number of variables per CSP was a random

number from 15 to 25. The domain size of the variables always equaled the number of variables in

6

the problem. The task of the arc-consistency algorithms consisted of transforming each CSP into

its arc-consistent equivalent or deciding that the CSP was arc-inconsistent. The lexicographical

queue heuristic (see [9] for a description) was used for adding elements to, and removing elements

from, queues/streams in all the algorithms.

The DEE version used for the experimentation here, is an arc-queue based version of the

one described in [2]. This implementation allows for a good estimation of the efficiency of using

double-support checks since DEE and AC-3b both process the same arcs in the same order.

The two algorithms only differ in the way they try to establish a support for the elements in the

domains of the variables at both ends of an arc.

6.2 Discussion of Results

The average numbers of consistency-checks for AC-3, DEE, AC-7 and AC-3b for the random

CSPs at each combination of density and tightness are depicted in Figures 4, 5, 6 and 7. The

numbers of consistency-checks for each algorithm averaged over each problem are presented in

Table 1.

Figures 8, 9, 10, and 11 depict the difference graphs for the average number of consistency-

checks between AC-3 and DEE, between AC-3 and AC-3b, between DEE and AC-3b, and

between AC-7 and AC-3b. The jagged lines at the bottom of Figures 8, 9, and 11 are where

the difference between the number of consistency-checks equals zero. Figure 12 depicts 1 −
#cc(AC-3b)/#cc(DEE). Figure 13 depicts 1−#cc(AC-3b)/#cc(AC-7).

DEE AC-3 AC-3b AC-7

#cc 7311 7261 5077 5319

Table 1: Average Number of Consistency-Checks

Table 1 seems to suggest that the DEE approach is a waste. This is because, despite the

fact that DEE uses the property that constraints are bi-directional, it can not gain much from

it. AC-3, for example, does less work than DEE on some problems because after processing an

arc (i, j) AC-3 does not always immediately process the reverse arc (j, i) if it is in the queue,

while DEE always does. To postpone processing (j, i) can be good for two reasons. First, if the

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 4: #cc(AC-3)

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 5: #cc(DEE)

7

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 6: #cc(AC-7)

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 7: #cc(AC-3b)

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 8: #cc(AC-3)−#cc(DEE)

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 9: #cc(AC-3)−#cc(AC-3b)

domain of i gets narrowed several times, the effect of adding the arc (j, i) to the queue several

times, can be overcome by processing (j, i) only once. Second, establishing support for j by

using values from Di which will be removed from Di later may waste consistency-checks. This

may be illustrated by the following two possible events. In the first and most extreme case AC-3

would processes another arc, say (i, k), and detects a wipe-out of Di. Had the arc (j, i) been

processed before (i, k) then any consistency-check spent on this arc would have been wasted. In

a less extreme case Di could have been narrowed by processing other arcs to i. This may save

work when (j, i) has to be processed because, in general, fewer consistency checks have to be

spent on each of the values in Dj when Di gets smaller. Both effects become more pronounced

when constraints become tighter. Only when constraints are loose will DEE outperform AC-3.

AC-3b is always better than DEE. Figure 10 shows this–by the way, note that, those parts

of the surface of the graph in Figure 10 which appear to be in the horizontal plane #cc = 0

are, in fact, above this plane. This seems to suggest that the strategy of using double-support

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 10: #cc(DEE)−#cc(AC-3b)

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 11: #cc(AC-7)−#cc(AC-3b)

8

checks to establish supports is a good one. It is interesting to see that the ratio between the

number of consistency-checks saved by the double-support heuristic and the total number of

consistency-checks, is nearly constant for fixed tightness (see Figure 12).

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

tightness

density

#cc

Figure 12: 1− #cc(AC-3b)

#cc(DEE)

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

tightness

density

#cc

Figure 13: 1− #cc(AC-3b)

#cc(AC-7)

AC-3b is better than AC-3 everywhere to the left of the phase transition region. AC-3

becomes better in the phase transition region, and stays better from there onwards. The reason

for this is the same as why AC-3 becomes better than DEE as average tightness increases.

Nevertheless, it seems that AC-3b is a more efficient algorithm than AC-3. The disadvantage

of always processing two arcs (the “DEE effect”) is turned into an advantage by adopting the

double-support heuristic. Possibilities seem to exist to improve AC-3b and DEE. One possibility

is to force the algorithms to degenerate to AC-3 (i.e. never to process a double arc) as soon as

they know (or learn) they are processing tight constraints.

AC-3b requires less consistency-checks than AC-7 in a larger area in the problem space

(see Figures 11 and 13) but as tightness increases AC-7 becomes better. In the low tightness

area AC-3b does better than AC-7 because most of its consistency-checks will lead to a double

support. AC-7 accumulates knowledge about consistency-checks it has already carried out and

never repeats one. Therefore it has to outperform AC-3b at some stage as tightness increases.

It may seem surprising that AC-3b seems to perform better on the test problems than AC-7,

despite the fact that AC-3b has a worse time-complexity. However, this phenomenon actually

also occurs elsewhere. For example, in the linear programming community the exponential

simplex algorithm is still preferred over existing polynomial algorithms because it behaves better

on average. AC-4 (another arc-consistency algorithm) has a better time complexity than AC-3.

This did not stop people from using AC-3—It was almost always better than AC-4 [8].

7 Conclusions and Recommendations

The notion of a double-support check heuristic has been presented. Experiments seem to suggest

that this heuristic can be used to improve the average performance of AC-3. The resulting

improved arc-consistency algorithm called AC-3b has been presented. Experimental results

seem to indicate that for the problems under consideration AC-3b is more efficient in a large

part of the tightness-density space than any existing arc-consistency algorithm. Possibilities

9

exist to improve AC-3b in the high tightness area.

It seems that double-supports can be used to improve AC-7 as well. One of the changes to

the algorithm should consist adding a dynamic value ordering for the values in the domains of

the variables. This ordering should partially depend on consistency-checks which were previously

carried out, and should also consist of a tie-break ordering. Future research will have to learn

what these proposed changes to these algorithms will mean in terms of average performance.

8 Acknowledgements

The work reported here was funded by the European Commission under ESPRIT project number

20501, with acronym CEDAS.

References

[1] C. Bessière, E.C. Freuder, and J.-C. Régin. Using inference to reduce arc consistency com-

putation. In C.S. Mellish, editor, IJCAI’95, volume 1, pages 592–598, Montréal, Québec,

Canada, 1995. Morgan Kaufmann Publishers, Inc., San Mateo, California, USA.

[2] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algorithms for

satisficing assignment problems. In Proceeding of the Second Biennial Conference, Canadian

Society for the Computational Studies of Intelligence, pages 268–277, 1978.

[3] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.

[4] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network consistency

algorithms for constraint satisfaction problems. Artificial Intelligence, 25(1):65–73, 1985.

[5] A.K. Mackworth and E.C. Freuder. The complexity of constraint satisfaction revisited.

Artificial Intelligence, 59:57–62, 1993.

[6] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In

A.G. Cohn, editor, ECAI’94, pages 125–129. John Wiley & Sons, 1994.

[7] M.R.C. van Dongen. AC-3b, an efficient arc-consistency algorithm with low space-complexity.

Technical Report TR-97-01, Department of Computer Science, National University of Ireland,

Cork, College Road, Cork, Ireland, 1997.

[8] R.J. Wallace. Why ac-3 is almost always better than ac-4 for establishing arc consistency in

CSPs. In R. Bajcsy, editor, IJCAI’93, pages 239–245, 1993.

[9] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency algorithms. In

AI/GI/VI ’92, pages 163–169, Vancouver, British Columbia, Canada, 1992.

10

