
Computing the Frequency of Partial Orders

M.R.C. van Dongen (dongen@cs.ucc.ie)?

Centre for Efficiency Orientated Languages, University College Cork

Abstract. In this paper we study four algorithms for computing thefrequency
of a given partial order. Here thefrequencyof a partial order is the number of
standard labellings respecting that partial order. The first two algorithms count
by enumerating all solutions to aCSP. However, large numbers of solutions to
CSPs soon make algorithms based on enumeration infeasible. The third and fourth
algorithm, to a degree, overcome this problem. They avoid repeatedly solving
problems with certain kinds of isomorphic solutions. A prototype implementation
of the fourth algorithm was significantly more efficient than an enumeration based
counting implementation using OPL.

1 Introduction

We study four algorithms for computing thefrequencyof partial orders. The problem of
frequency computation is posed in [4], where it is calledcounting labellings(see also
[5, Page 316]).

Our first two algorithms count by enumerating the solutions of a Constraint Sat-
isfaction Problem (CSP). This soon becomes infeasible due to large numbers of so-
lutions. At the time of writing the best known general purpose algorithm for count-
ing solutions to binaryCSPs has a time complexity ranging fromO

(
(dα4/4)n

)
to

O
(
(α5 + α+ bd/4− 1cα4)n

)
, wheren is the number of variables,d is the size of

the largest domain, andα ≈ 1.2561 [1]. Counting solutions toCSPs is known to be
#P-complete in general [2]. The third and fourth algorithm overcome some of the weak-
nesses of search based algorithms. Both algorithms avoid labelling the same suborder
with differentlabel sets. The fourth algorithm also avoids repeatedly labelling the same
suborder withthe samelabel set.

Section 2 presents mathematical background. Section 3 encodes frequency com-
putation as enumerationCSPs. Section 4 presents two improvements to theCSP-based
algorithms. Results are presented in Section 5. Section 6 presents conclusions.

2 Mathematical Background

A partial order is an ordered pairP = 〈N,v〉, whereN is a set andv is a reflexive
and transitive relation onN such thatv v w ∧w v v =⇒ v = w for all v,w ∈ N . We
will write v @ w for v v w ∧ v 6= w. A bijection l : N 7→ L is called alabelling of P
? c© Springer-Verlag. This work has received support from Science Foundation Ireland under

Grant02/IN.1/181 .

2

if v @ w =⇒ l(v) < l(w), for all v, w ∈ N . If in additionL = { 1, . . . , |N | } thenl
is called astandardlabelling ofP. Thefrequencyof P, denotedf(P), is the number of
standard labellings ofP.

3 Formulating the Labelling Problem as a CSP

A constraint satisfaction problem(CSP) is a tuple〈X,D,C 〉, whereX is a set of vari-
ables,D is a function that maps each variable to its domain, andC is a set of constraints.
Here aconstraintis a pair〈S,R 〉, whereS is an ordered sequence of variables andR
is a subset of the Cartesian product of the variables inS. A solutionof CSP〈X,D,C 〉
is a functions such thats(x1, . . . , xm) ∈ R for all 〈 〈x1, . . . , xm 〉, R 〉 ∈ C.

Let 〈X,v〉 be a partial order. Furthermore, letD(x) = { 1, . . . , |X | }, for x ∈ X,
and letC be given byC =

{
〈 〈 v, w 〉, Rvw 〉 : 〈 v, w 〉 ∈ X2 ∧ v < w

}
, where

Rvw =


{ 〈 i, j 〉 ∈ D(v)×D(w) : i 6= j } if ¬(v v w) ∧ ¬(w v v) ,
{ 〈 i, j 〉 ∈ D(v)×D(w) : i < j } if v @ w ,

{ 〈 i, j 〉 ∈ D(v)×D(w) : j < i } if w @ v .

It is left as an exercise to the reader to prove that〈X,D,C 〉 is a CSPwhose solutions
are exactly the standard labellings of〈X,v〉.

An alternative formulation is to replace all disequality constraints· 6= · by a global
alldifferent constraint. This has the advantage that efficient algorithms are known
for enforcing hyper-arc consistency for this global constraint [3].

We implemented the algorithms using OPL [7] andMAC-3d [6]. The MAC-3d im-
plementation uses binary disequality constraints, whereas the OPL implementation uses
Régin’s filtering constraint [3]. TheMAC-3d version was about ten times faster.

4 Counting by Removing One or Several Nodes

The restrictionof P = 〈N,R 〉 to M ⊆ N is defined as〈M,R ∩M2 〉. The restric-
tion 〈N ′,v〉 of P to N ′ ⊆ N is called a(connected) componentof P if both of the
following are true:

– For all u,w ∈ N ′ there exist a (possibly empty) set{ v1, . . . , vm } ⊆ N ′ and
�i∈ {v,w}, for 1 ≤ i ≤ m+ 1, such thatu �1 v1 �2 · · · �m vm �m+1 w.

– For allu ∈ N ′ and allw ∈ N \N ′ there do not exist a set{ v1, . . . , vm } ⊆ N and
�i∈ {v,w}, for 1 ≤ i ≤ m+ 1, such thatu �1 v1 �2 · · · �m vm �m+1 w.

Theorem 1 (Multinomial Property). LetP = 〈N,R 〉 be a partial order and letN1,
. . . ,Nm be pairwise disjoint non-empty sets such that〈N,R 〉 = 〈 ∪mi=1Ni,∪mi=1R ∩
N2
i 〉 , thenf(P) = (|N1 |+···+|Nm |)!

(|N1 |!)×···×(|Nm |!) ×
∏m
i=1 f(〈Ni, R ∩N2

i 〉).

The minimaof P = 〈N,R 〉, denotedminima(P), are defined asminima(P) =
{ v ∈ N : (N × { v }) ∩R = { 〈 v, v 〉 } }. The maximaof P, denotedmaxima(P),
are defined asmaxima(P) = { v ∈ N : ({ v } ×N) ∩R = { 〈 v, v 〉 } }.

3

Function frequency(Partial Order of Integer 〈N,E 〉): Integer;
Integer product , sum ;

Begin
product := |N |!;
Foreach〈N ′, E′ 〉 In connected components(〈N,E 〉) Do

If |N ′ | > 1 Then Begin
sum := 0;
Foreachm ∈ minima(〈N ′, E′ 〉) Do

sum := sum + frequency(〈N ′ \ {m } , E′ ∩ (N ′ \ {m })2 〉);
product := product × sum/|N ′ |!;

End;
Return product ;

End;

Fig. 1.Algorithm for computing the frequency of a partial order.

The multinomial property lets us reduce a problem havingseveralconnected com-
ponents to several smaller labelling problems. The following lemma allows us to reduce
a problem having onlyoneconnected component to a smaller problem.

Lemma 2. LetP = 〈N,v〉 and letm ∈ N .P has a standard labellingf(·) such that
f(m) = |N | (f(m) = 1) if and only ifm ∈ maxima(P) (m ∈ minima(P)).

Theorem 3. LetP = 〈N,R 〉 be a partial order and letM = maxima(P), then

f(P) =
∑
m∈M

f(〈N \ {m } , R ∩ (N \ {m })2 〉) .

Proof. By Lemma 2 only the maxima can be assigned the largest label. The number
of standard labellings ofP where a given maximal nodem is labelled with the largest
label is equal to the number of standard labellings of the restriction ofP toN \ {m }.

Theorem 3 remains true when substituting minima for maxima. Theorems 1 and 3 sug-
gest an algorithm for computing frequencies of partial orders. Pseudo-code for this
algorithm is depicted in Figure 1. It maintains global consistency and exploits the multi-
nomial property to avoid labelling the same partial order with different label sets. Un-
fortunately,frequency frequently (implicitly) labels sub-orders with the same label set.

Let let∅ ⊂ S ⊆ N .S is maximal(minimal) with respect toP = 〈N,v〉 if there is a
standard labellingl(·) of P such that{ l(s) : s ∈ S } = { |N | − |S |+ 1, . . . , |N | }.
(such that{ l(s) : s ∈ S } = { 1, . . . , |S | }).

Theorem 4. LetP = 〈N,R 〉 be a partial order let1 ≤ s ≤ |N | and letM be the set
constaining all maximal sets ofP that have a Cardinality ofs, then

f(P) =
∑
S∈M

f(〈N \ S,R ∩ (N \ S)2 〉)× f(〈S,R ∩ S2 〉) .

Proof. By induction ons and application of Theorem 3.

Theorem 4 remains true if minimal is substituted for maximal. The algorithm called
frequency ′ (depicted in Figure 2) uses Theorem 4 for frequency computation. The pa-
rametersize is thesize-parameterof the algorithm. It corresponds tos in Theorem 4.

4

Function frequency′(Integer size,Partial Order of Integer 〈N,E 〉): Integer;
Integer product ;
Function freq(Integer size,Partial Order of Integer 〈N,E 〉): Integer;

Integer sum ;
Set of IntegerD;

Begin
If |N | ≤ 1 Then

Return 1;
Else If size ≥ |N | Then

Return freq(size/2, 〈N,E 〉);
Else Begin

sum := 0;
ForeachM ∈ minimal sets(size, 〈N,E 〉) Do Begin
D := N \M ;
sum := sum + frequency′(size, 〈M,E ∩M2 〉)× frequency′(size, 〈D,E ∩D2 〉);

End;
Return sum ;

End;
End;

Begin
product := |N |!;
Foreach〈N ′, E′ 〉 In connected components(〈N,E 〉) Do

product := product × freq(size, 〈N ′, E′ 〉)/|N ′ |!;
Return product ;

End;

Fig. 2. Improved algorithm for computing the frequency of partial orders.

5 Experimental Results

Let Km,n = 〈 { 1, . . . ,m+ n } ,v〉, wherei @ j ⇐⇒ i ≤ m < j. These orders
are difficult to count forfrequency and frequency ′. “Tree shaped orders” are among
the easiest connected orders count. LetB+

n (B−n) denote the partial order whose Hasse
diagram corresponds to the complete binary tree with21+n − 1 nodes, that is rooted at
the bottom (top). Note thatf(B+

n) = f(B−n).

We implementedfrequency and frequency ′ in Prolog . They improved signifi-
cantly over the MAC-based algorithms. MAC-3d our best MAC-based algorithm re-
quired more than 6 hours for computingf(K8,8). An implementation with OPL did
not terminate after many hours and required an intermediate memory size of more
than 60MB. However,frequency ′ required 0.01 seconds for computingf(K8,8) with
a size-parameter of8. and fewer than 2 seconds with a size-parameter of2.

Table 1 lists the results of applyingfrequency ′. All results were obtained with a
1000 MHz DELL Latitude. The results forB−n with a size-parameter of1 demonstrate
the advantage of using Theorem 1. Each time a node is removed fromB−n this results
in two B−n−1, for n > 0. The results for theKn,n andB+

n demonstrate the advantage
of Theorem 4 because as the size-parameter increases less and less time is required.

The differences in time for computing the frequencies ofB+
n andB−n demonstrates

thatfrequency ′ is not clever at exploiting structural properties of partial orders. It should
be possible to improve the algorithm by allowing it to also remove maximal sets.

5

Problem Size Frequency Time in Seconds
B+

3 1–3 stack overflow —
B+

3 4 21964800 3.45
B−3 1 21964800 0.00
B−6 1 10163.61 0.21
B−8 1 109568.46 3.96
K8,8 1 stack overflow —
K8,8 2 1625702400 1.96
K8,8 8 1625702400 0.01
K10,10 10 13168189440000 0.06
K16,16 16 437763136697395052544000000 9.30

Table 1.Timing results forfrequency ′ algorithm.

6 Conclusions

We studied four algorithms for computing the frequency of a given partial order. The
first two algorithms are based on the correspondence between partial orders and con-
straint satisfaction problems (CSPs). They use backtrack search while maintaining arc
consistency to enumerate and count all solutions. A disadvantage of these algorithms is
that they soon become infeasible due to there being many solutions.

The third and fourth algorithm overcome some of the weaknesses of the search
based algorithms. They eliminate a class of permutations acting upon theentire label
set of a given partial orderP. For moderately sized problems the techniques presented
in this paper significantly reduce the total solution time.

References

1. O. Angelsmark and P. Jonsson. Improved algorithms for counting solutions in constraint
satisfaction problems. In F. Rossi, editor,Proceedings of the ninth International Conference
on Principles and Practice of Constraint Programming (CP’2003), pages 81–95, 2003.

2. A.A. Bulatov and V. Dalmau. Towards a dichotomy for the counting constraint satisfaction
problem. InProceedings of the 41st Annual Symposium on Foundations of Computer Science
(FOCS 2003), pages 272–282, 2003.

3. Jean-Charles Ŕegin. A filtering algorithm for constraints of difference in CSPs. InProceed-
ings of the12th National Conference on Artificial Intelligence (AAAI’94), pages 362–367,
1994.

4. M.P. Schellekens. Compositional average time analysistoward a calculus for software timing.
Technical report, Centre for Efficiency Orientated Languages, 2004. In Preparation.

5. R. Sedgewick and P. Flajolet.An Introduction to the Analysis of Algorithms. Addison-Wesley
Publishing Company, 1996.

6. M.R.C. van Dongen. Saving support-checks does not always save time.Artificial Intelligence
Review, 2004. Accepted for publication.

7. P. Van Hentenryck.The OPL Programming Language. MIT Press, 1999.

