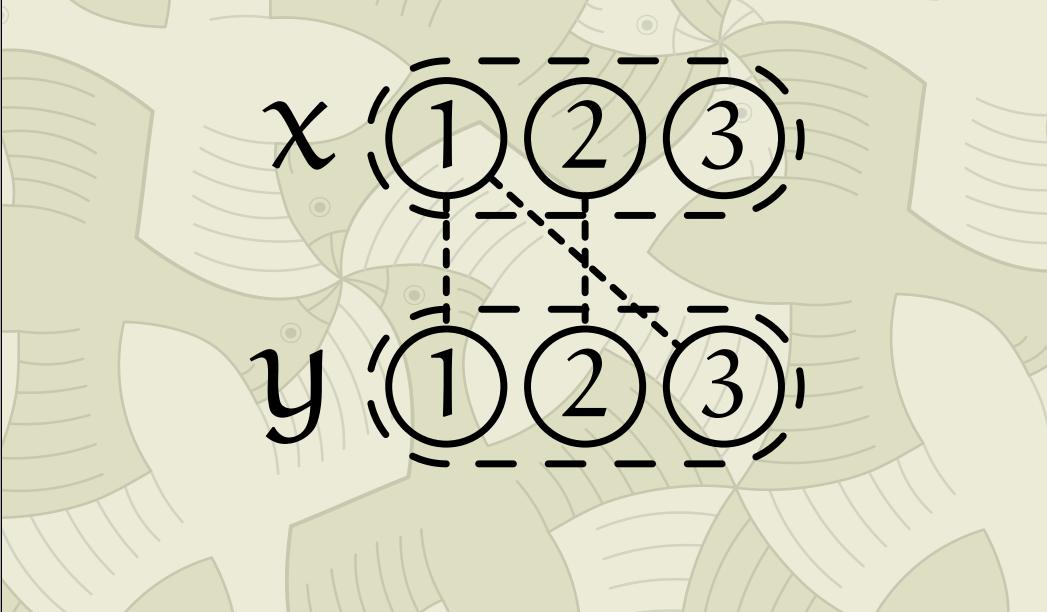
Domain-Heuristics for Arc-Consistency Algorithms

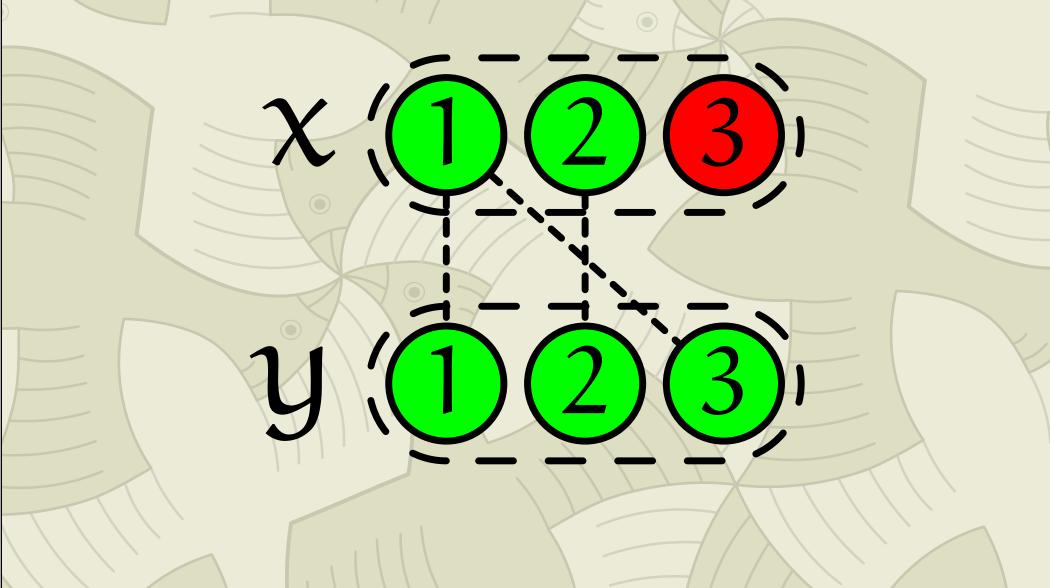
M.R.C. van Dongen Compute Science Department UCC Cork Constraint Computation Centre Homepage: http://csweb.ucc.ie/~dongen.html Email: dongen@cs.ucc.ie

June 19, 2002

Outline

- Arc-Consistency;
- Case Study;
- Results;
- Discussion and Future Work.





Heuristics

Arc-consistency algorithms carry out *support-checks* to find out about the properties of CSPs.

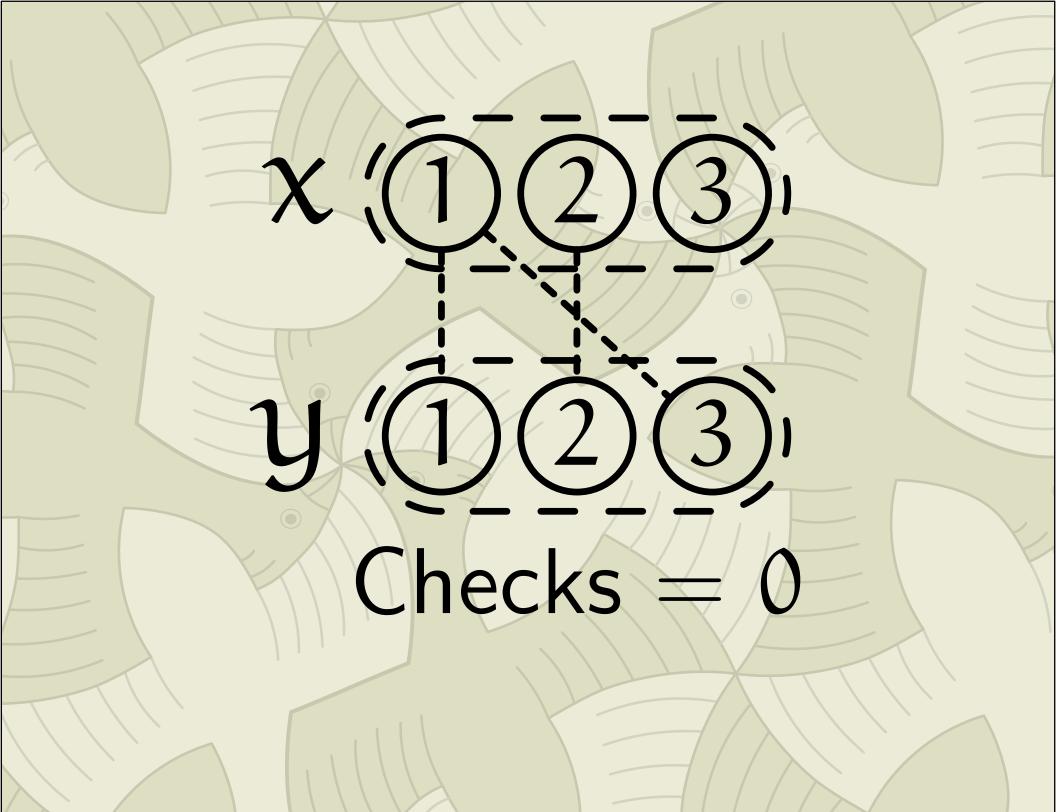
They use *arc-heuristics* to select the constraint that will be used for the next support-check.

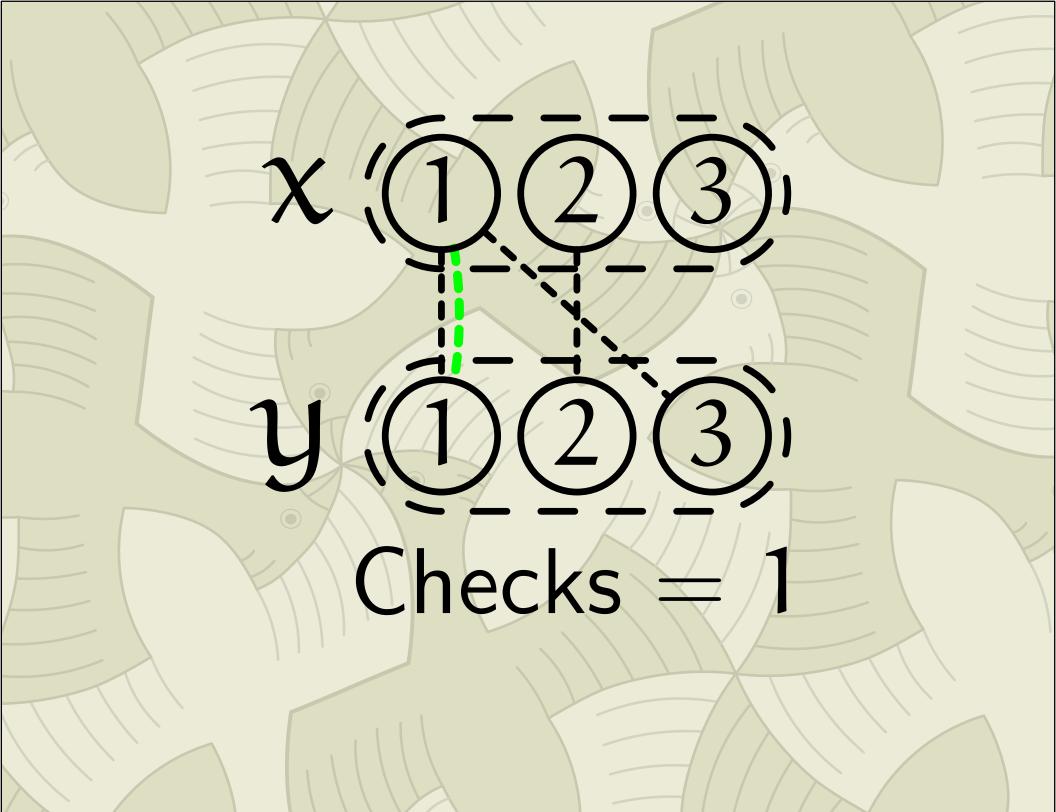
They use *domain-heuristics* to select the values that will be used for the next support-check.

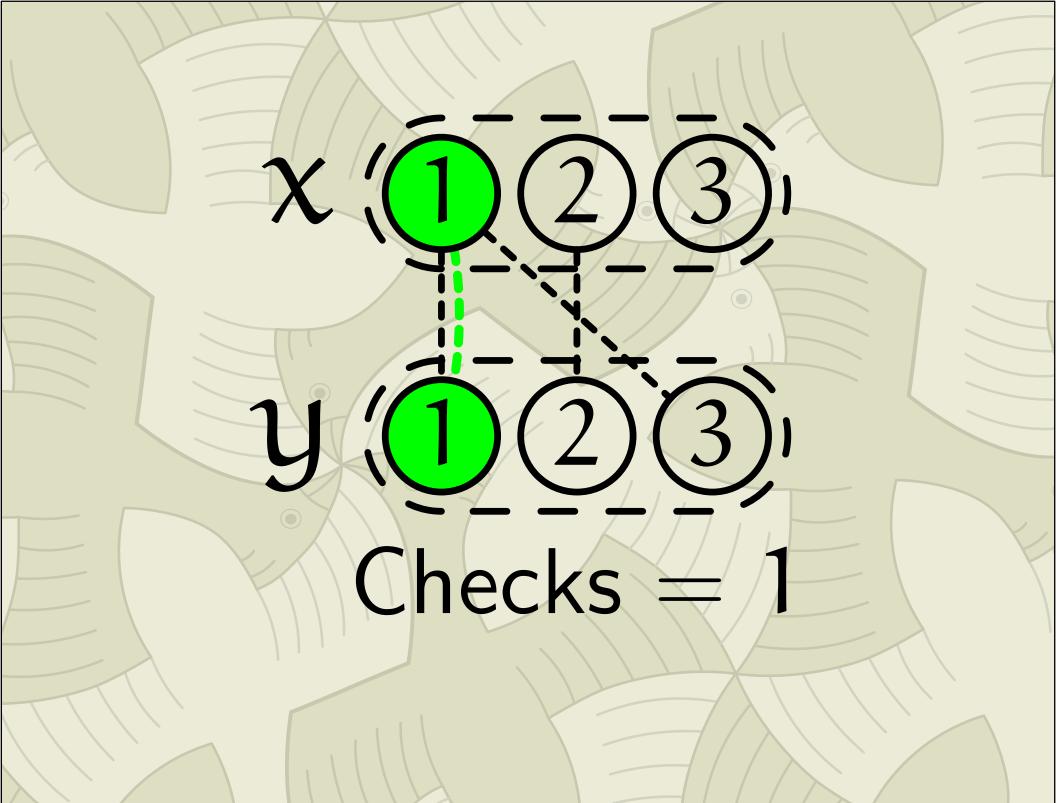
Domain-Heuristic *L*

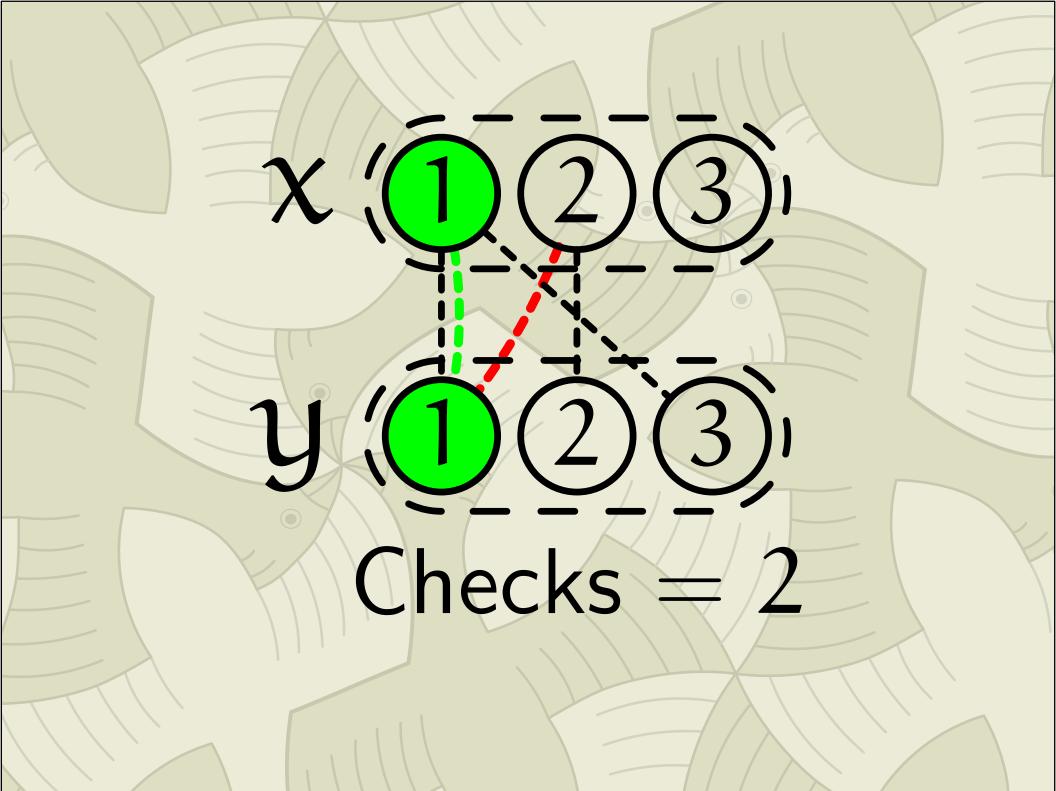
Arc-Consistency Algorithms come in many different flavours.

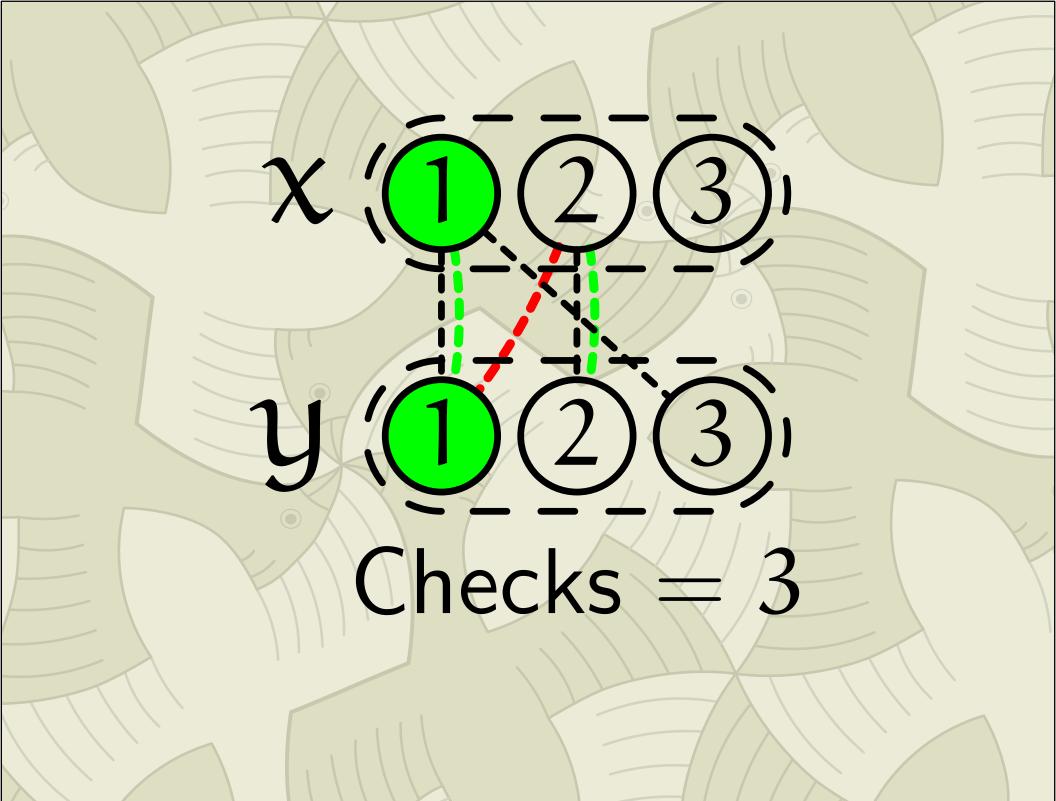
The current state-of-the-art is called AC-7. It never repeats support-checks and has a O(ed) space-complexity. AC-7 normally comes equipped with a lexicographical domain-heuristic \mathcal{L} .

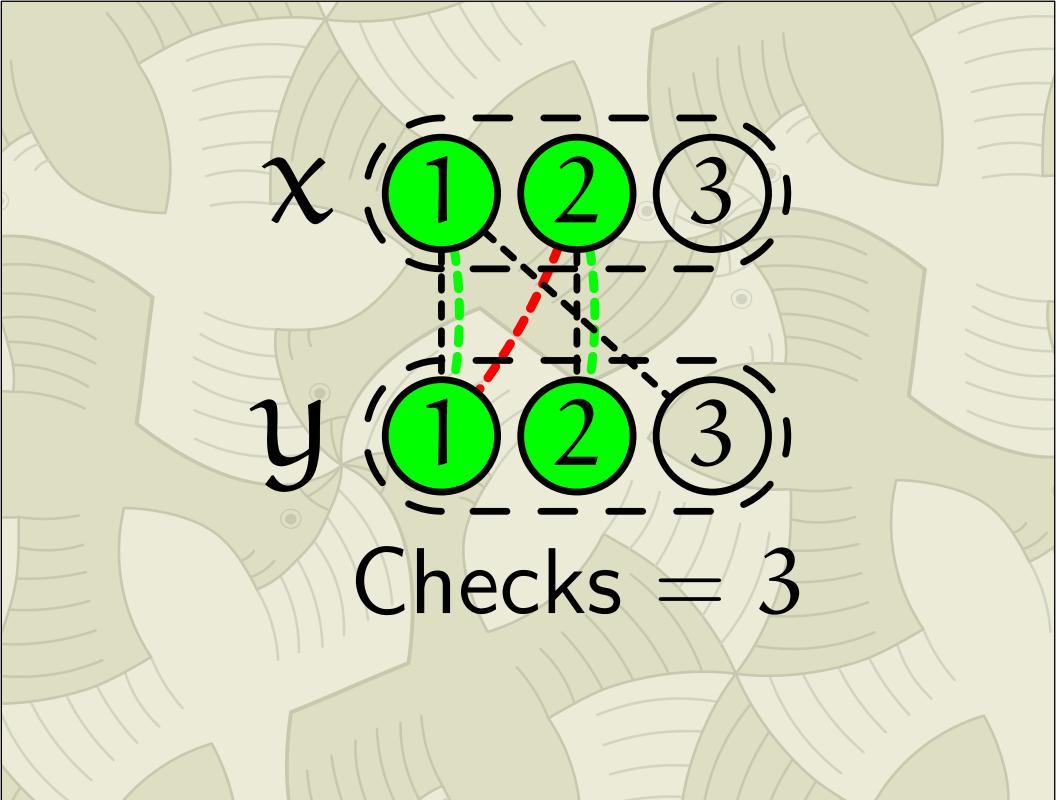


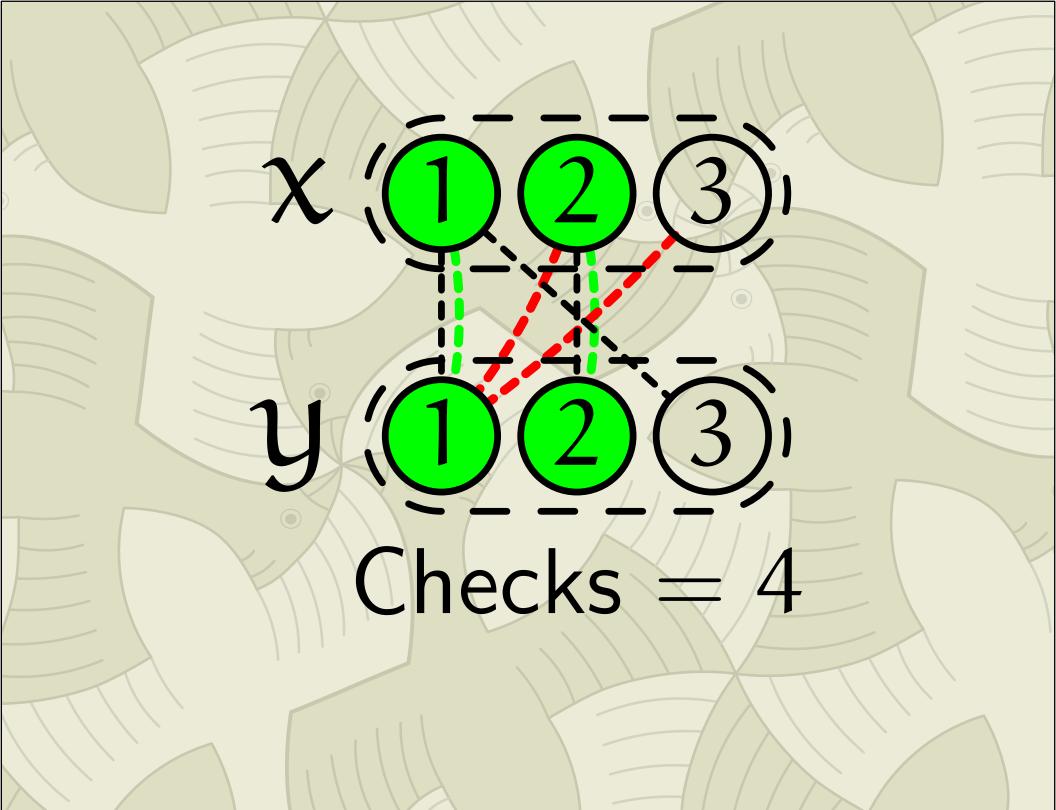


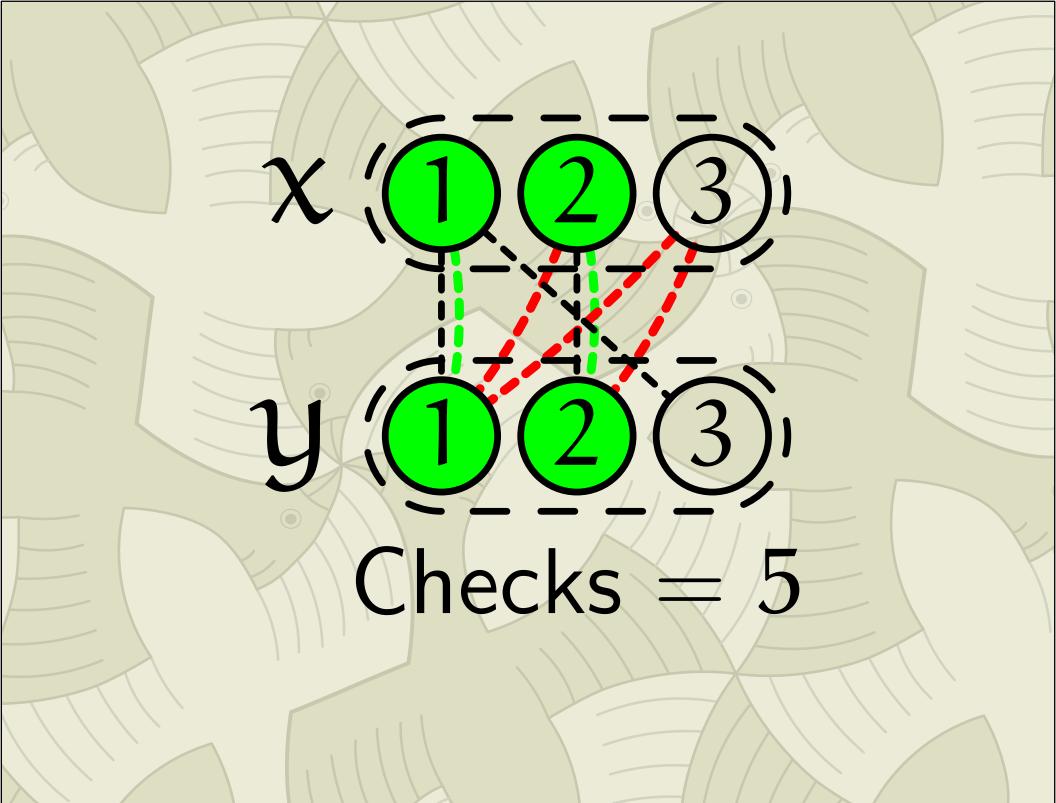


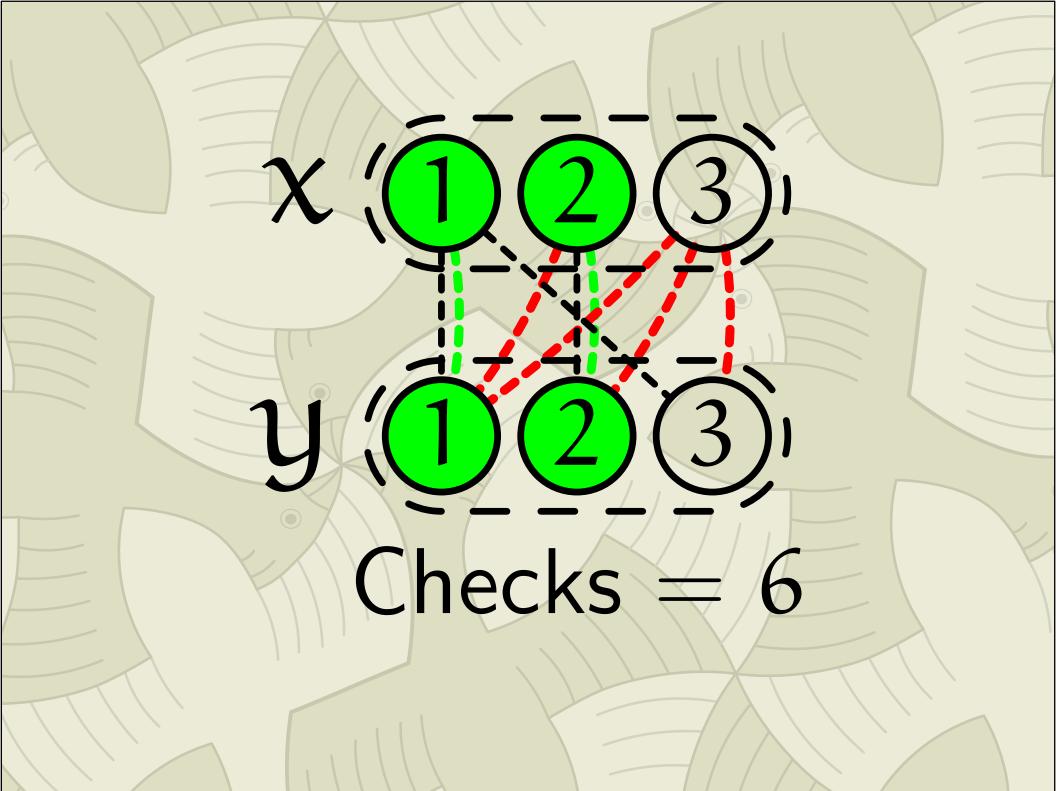


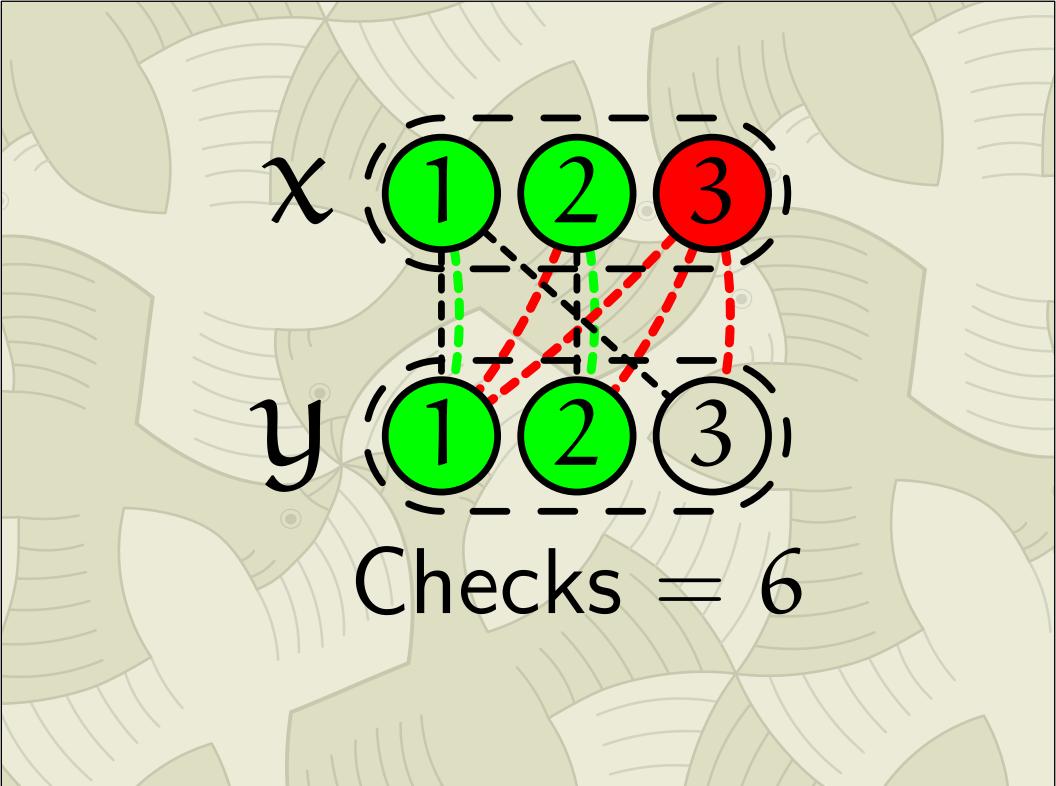


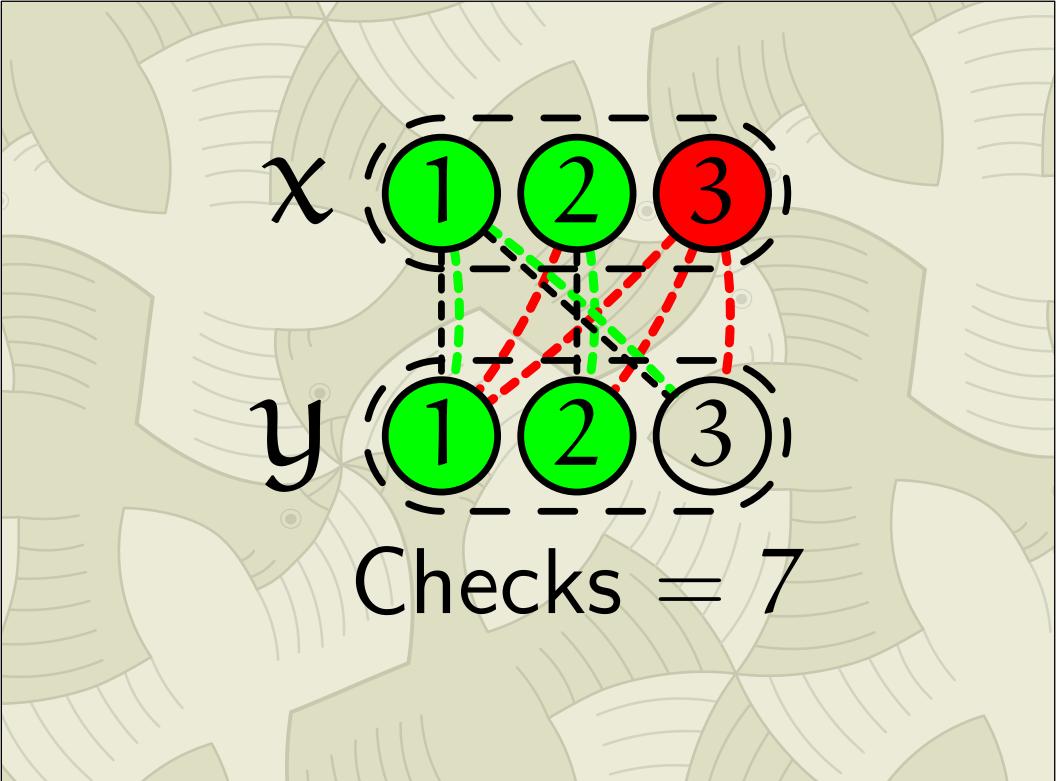


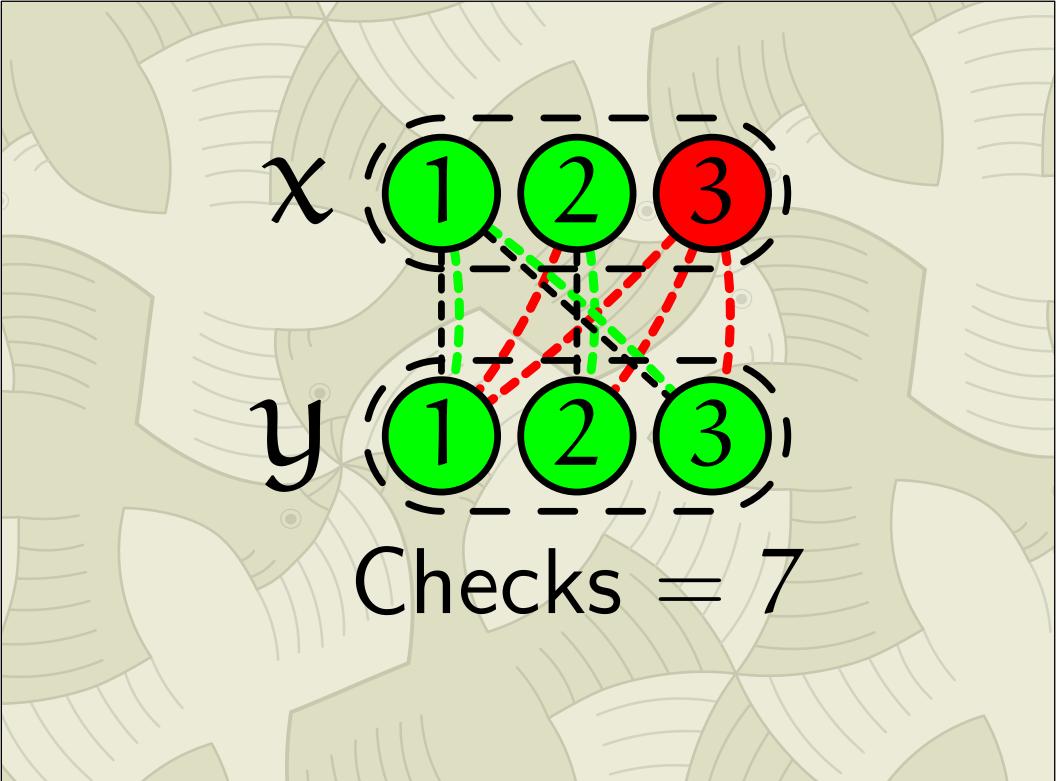








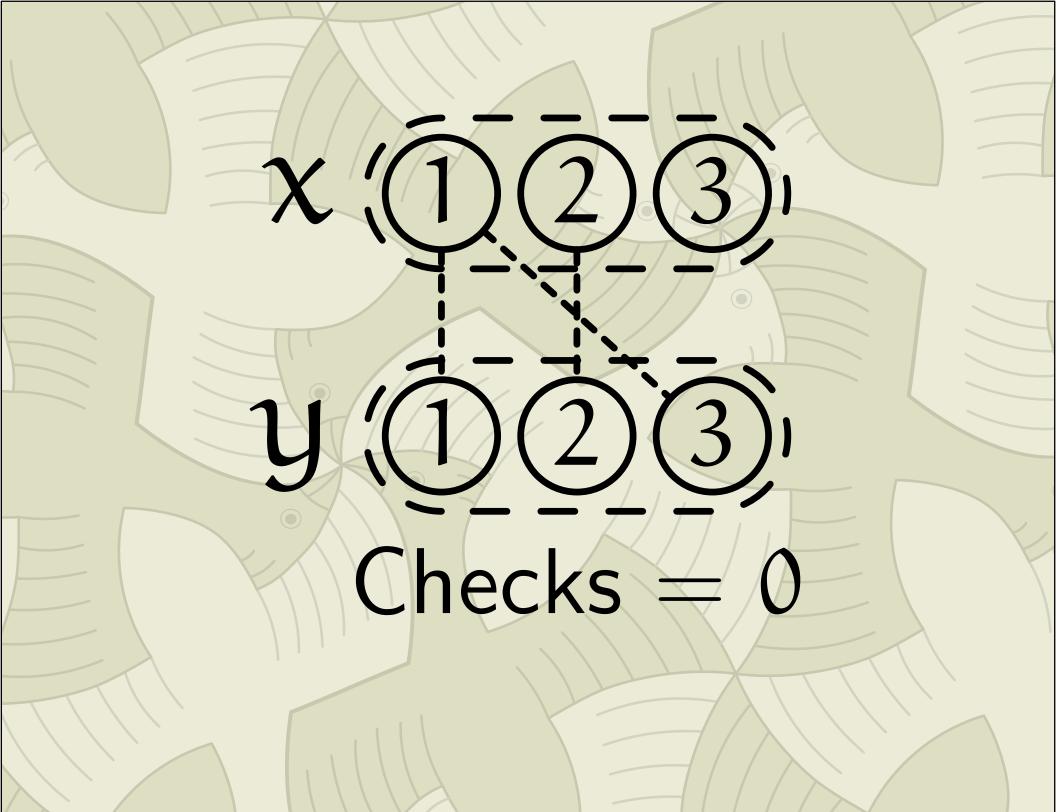


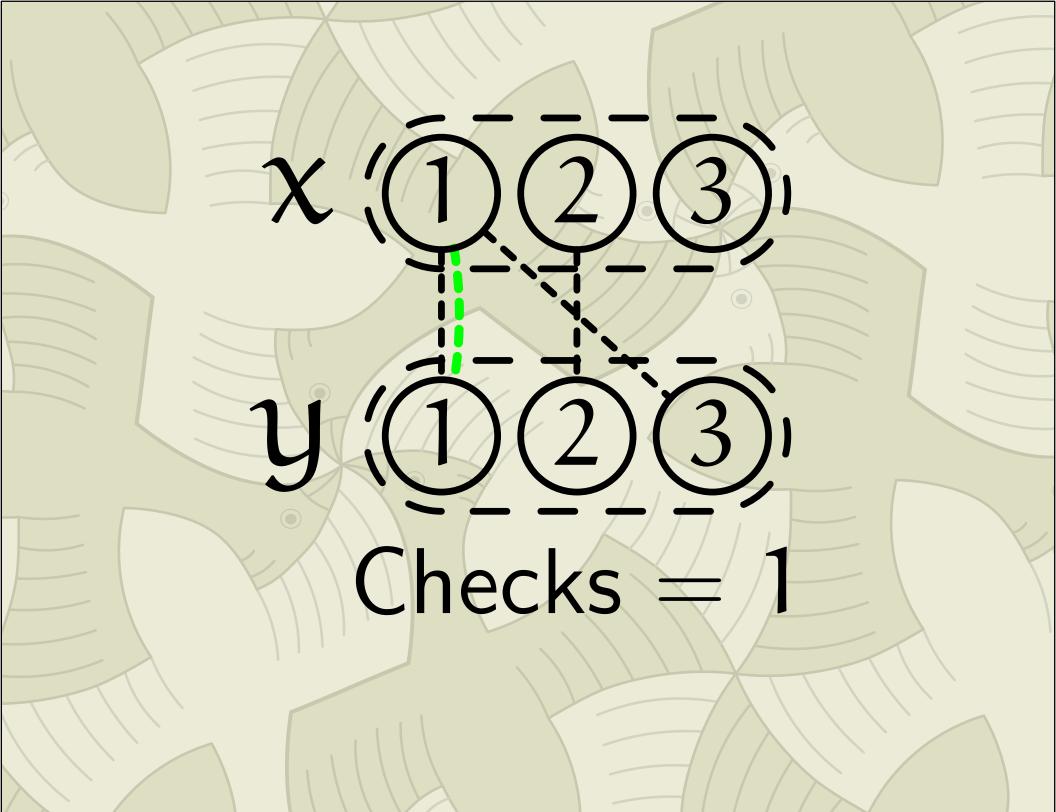


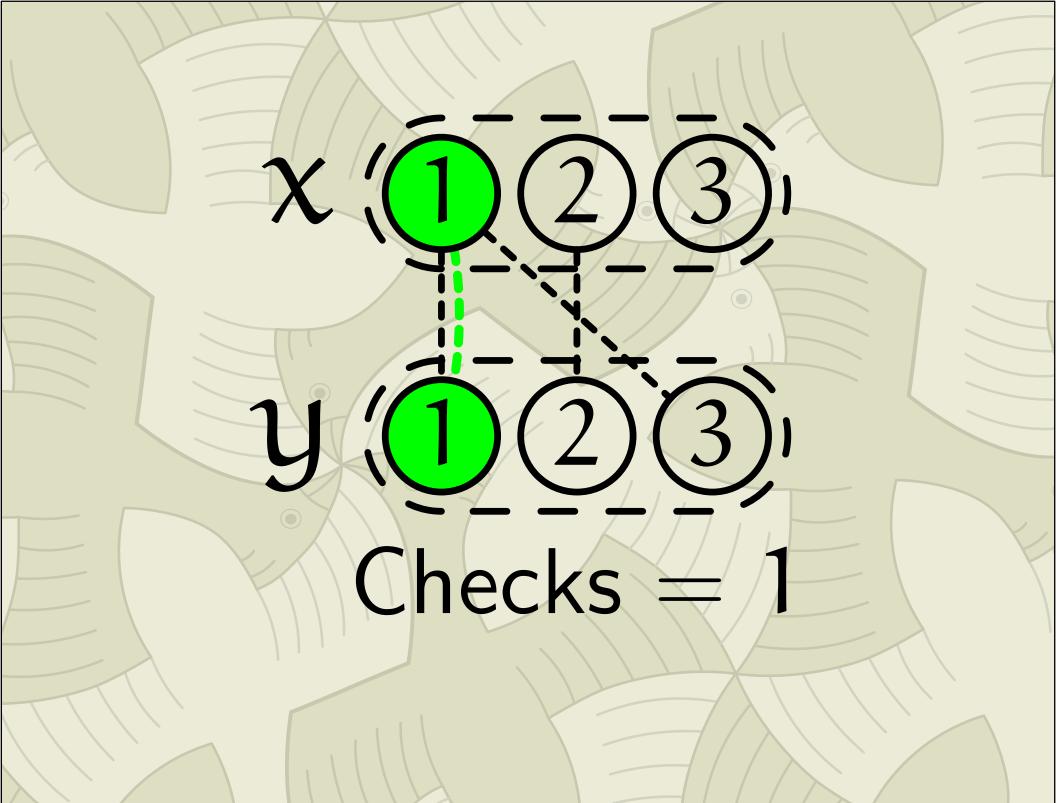
Domain-Heuristic \mathcal{D}

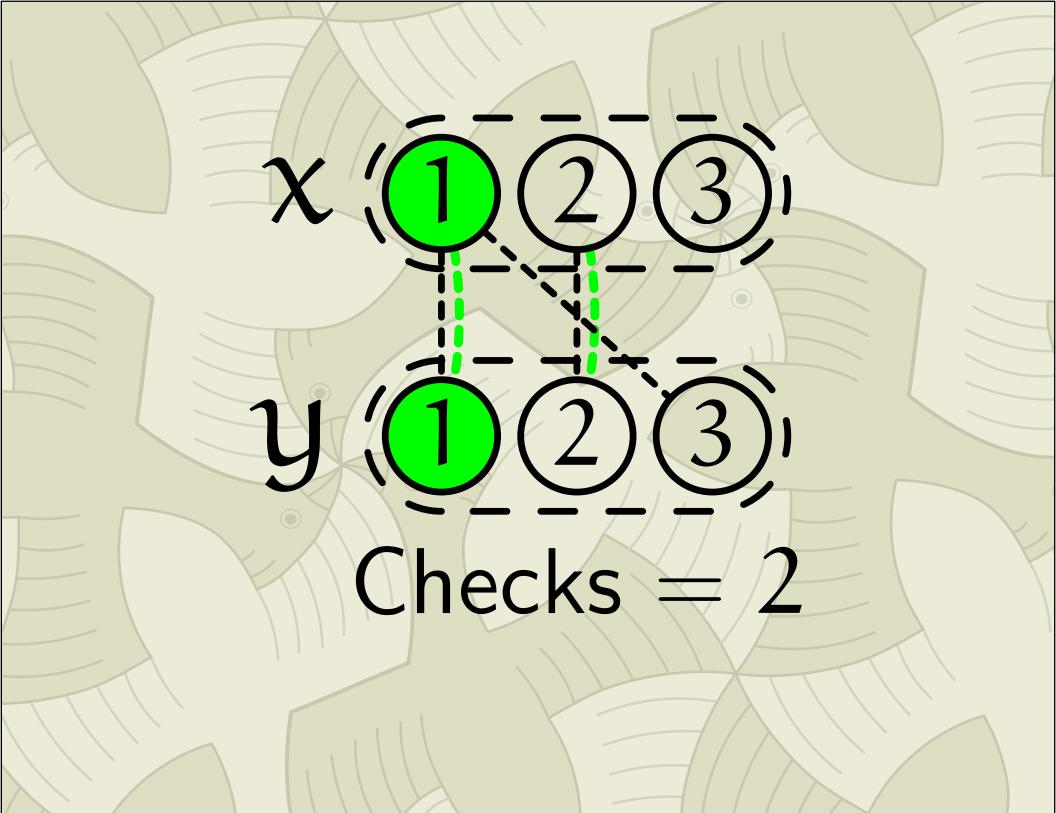
A heuristic which seeks to maximise the number of *double-support* checks.

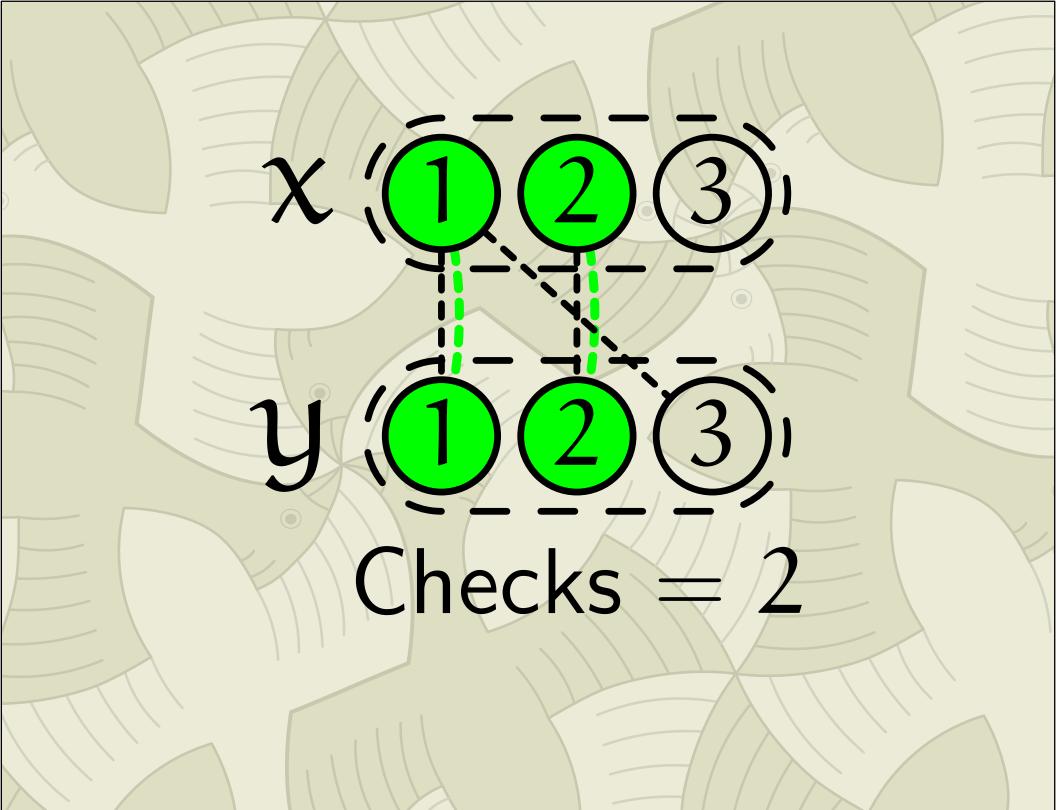
This heuristic can be incorporated into most arc-consistency algorithms.

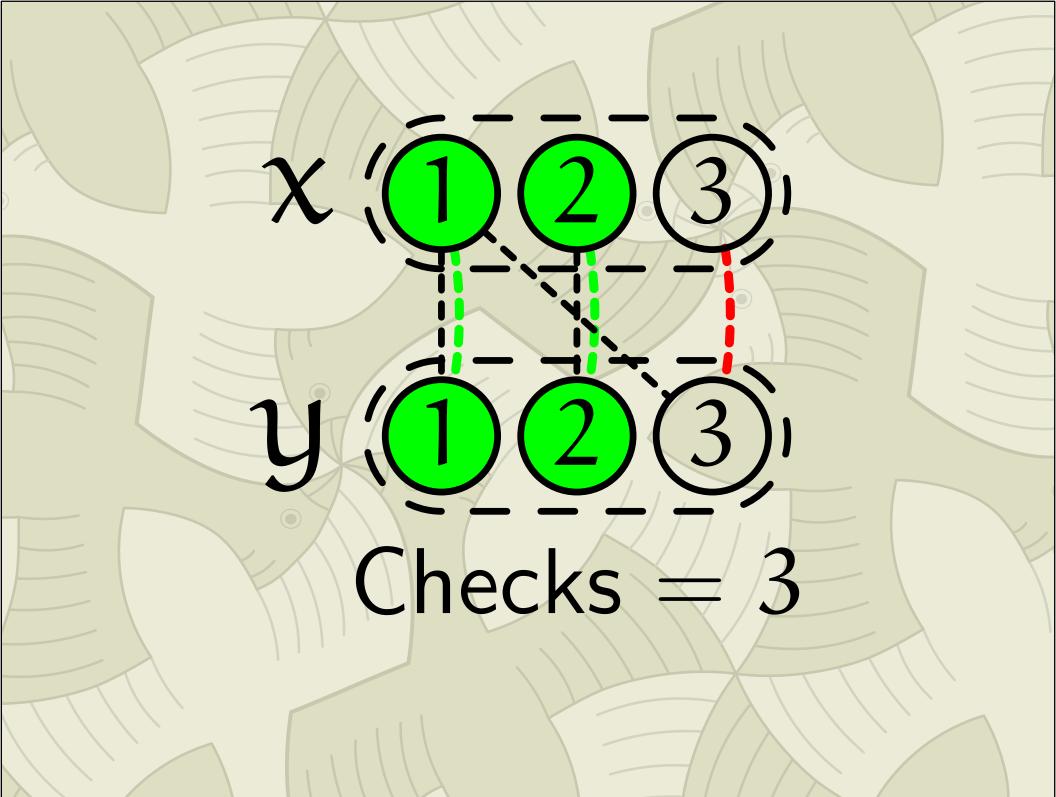


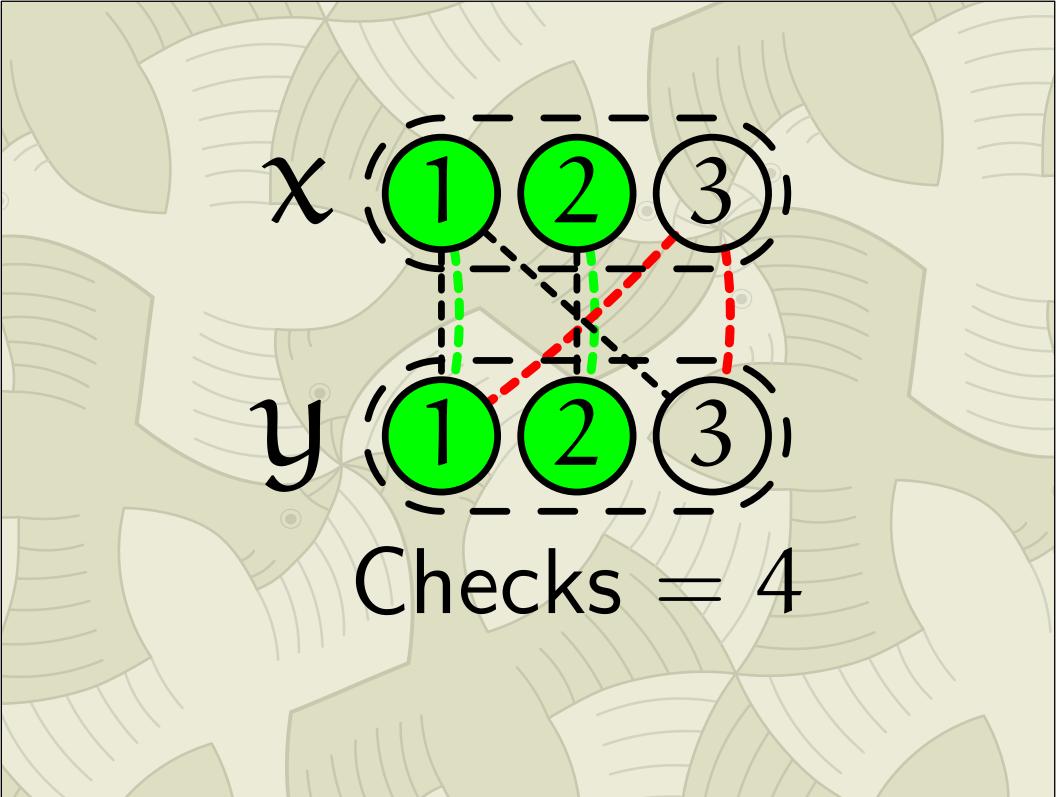


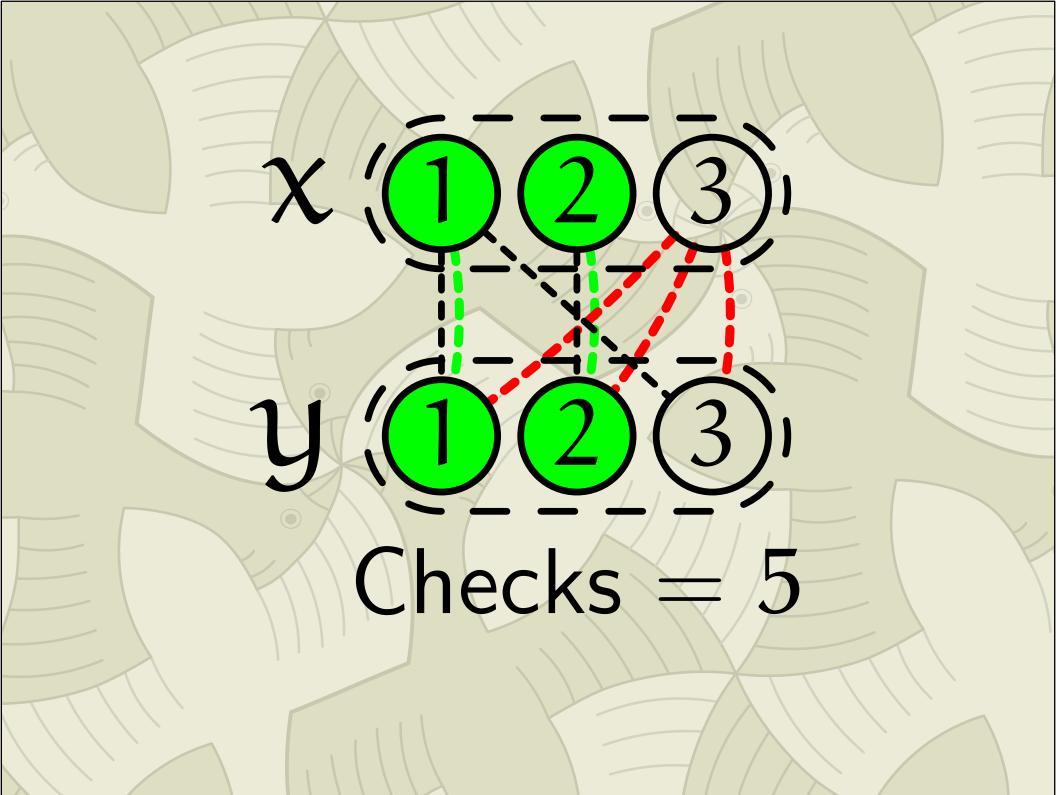


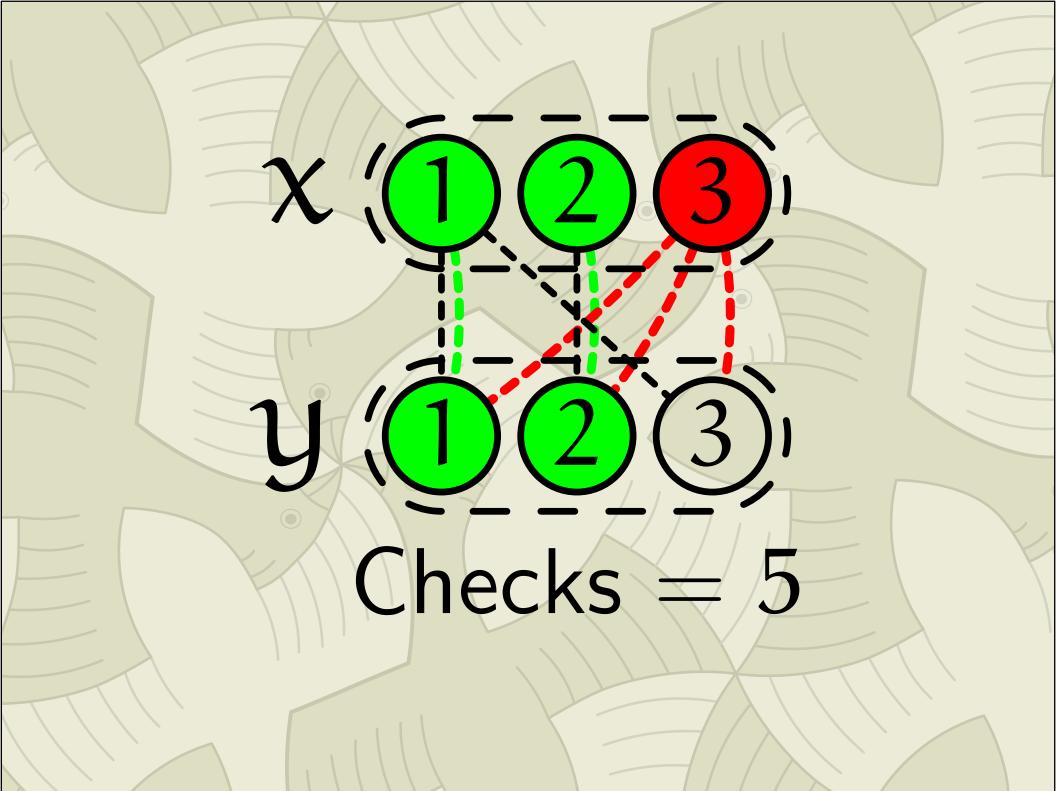


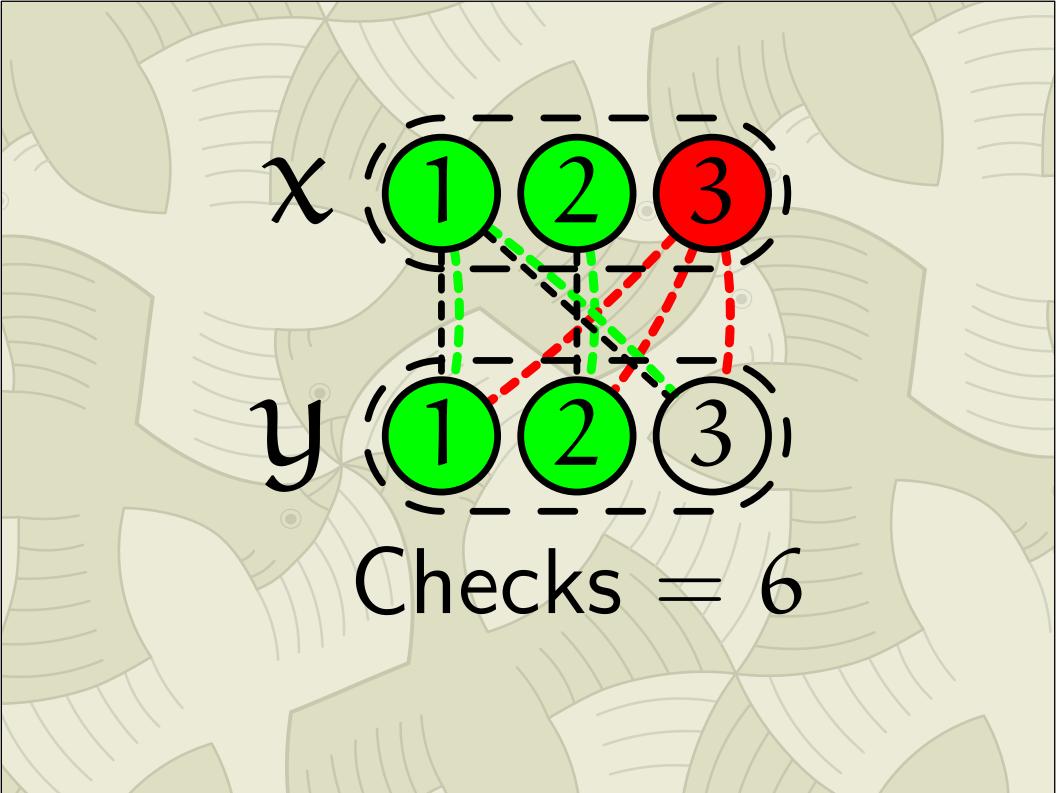


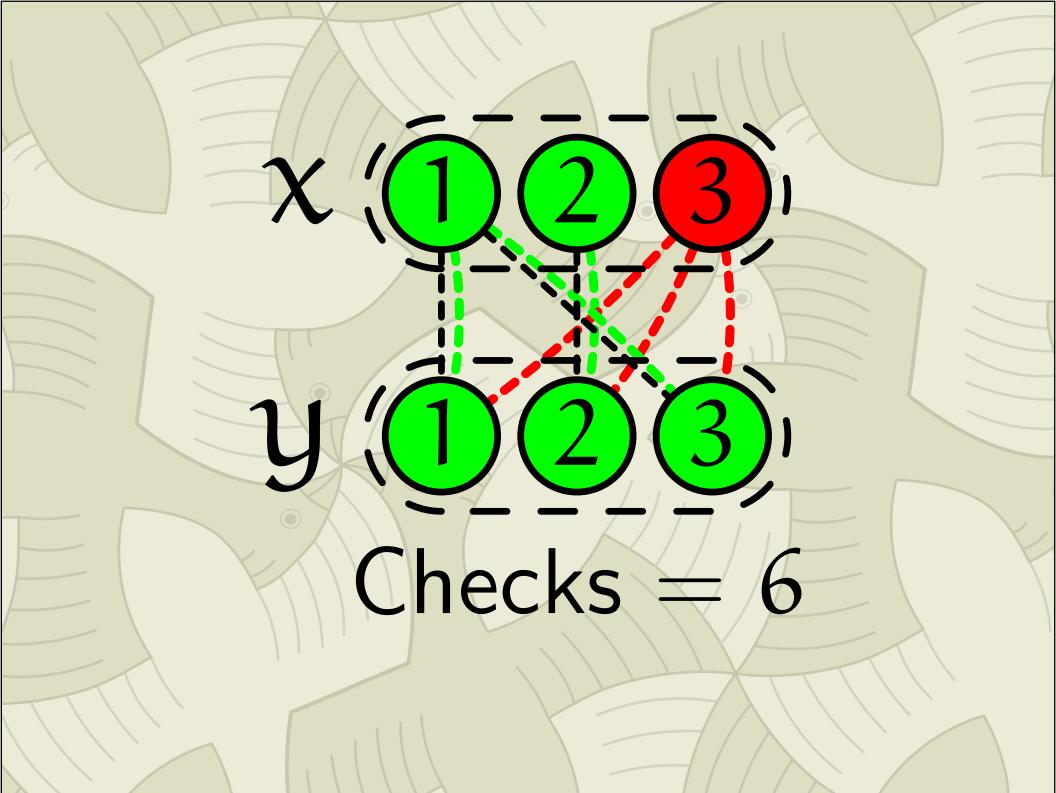












Case Study

Let's study \mathcal{L} and \mathcal{D} if there are only two values in the domains of the variables.

We shall assume there are two variables x and y. The size of the domain of x will be a and that of y will be b.

A constraint M between x and y is a by b zero-one matrix. M allows the "simultaneous assignment" x = i and y = j if and only if $M_{ij} = 1$.

Our objective is to find out, for each column i and each row j, if there's a 1 in the i-row and the j-th column.

Traces of \mathcal{L} for the Two by Two Case

Traces of \mathcal{D} for the Two by Two Case



Results

Definition 1. Let \mathfrak{a} and \mathfrak{b} be positive integers. The set containing all \mathfrak{a} by \mathfrak{b} constraints will be denoted by $\mathbb{M}^{\mathfrak{a}\mathfrak{b}}$.

Definition 2. Let \mathcal{A} be an arc-consistency algorithm and let \mathcal{M} be a constraint between x and y. The number of checks required by \mathcal{A} to remove the unsupported values from the domains of x and y will be denoted checks_{\mathcal{A}}(\mathcal{M}).

Definition 3. [Average Time-Complexity] Let \mathcal{A} be an arcconsistency algorithm. The average time-complexity of \mathcal{A} over \mathbb{M}^{ab} is the function $\operatorname{avg}_{\mathcal{A}} : \mathbb{N} \times \mathbb{N} \mapsto \mathbb{Q}$, where

 $\operatorname{avg}_{\mathcal{A}}(a,b) = \sum_{M \in \mathbb{M}^{ab}} \operatorname{checks}_{\mathcal{A}}(M)/2^{ab}.$

Average Time-Complexity Results for *L*

Theorem 1. [Average Time Complexity of \mathcal{L}] The average time complexity of \mathcal{L} over \mathbb{M}^{ab} is given by:

 $\operatorname{avg}_{\mathcal{L}}(a,b) = a(2-2^{1-b}) + (1-b)2^{1-a} + 2\sum_{c=2}^{b} (1-2^{-c})^{a}.$

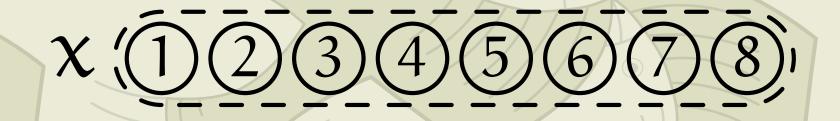
Following Flajolet and Sedgewick we obtain the following estimate: $\operatorname{avg}_{\mathcal{L}}(a, b) \approx \widetilde{\operatorname{avg}}_{\mathcal{L}}(a, b) = 2a + 2b - 2\log_2(a) - 0.665492.$ For a = b = 10 we have $|\operatorname{avg}_{\mathcal{L}}(a, b) - \widetilde{\operatorname{avg}}_{\mathcal{L}}(a, b)| / \operatorname{avg}_{\mathcal{L}}(a, b) < 0.5\%.$

Intuitive Proof for *L*'s Bound

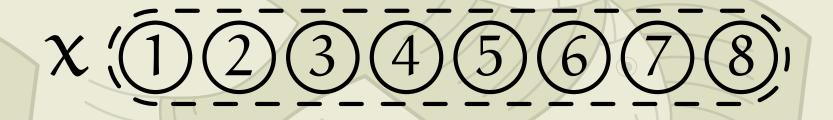
x(1)2345078)

y (12345678)

 \mathcal{L} requires about 2(a + b - l) checks to find support for the members of D(x) and D(y).



y(1)2345078)



y (DDD345678)

Let's assume that $|D(x)| = 2^k$, for some integer k.

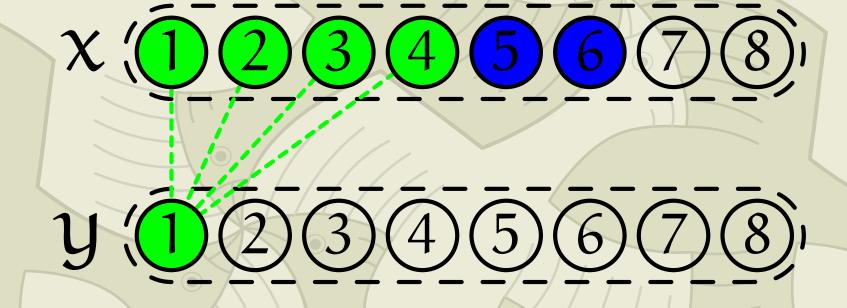
$\chi (12345078)$

y (DDJJ45678)

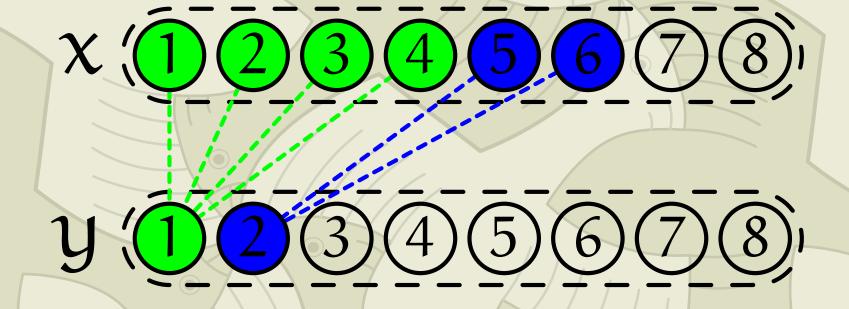
For about half of the members of D(x)

x (12345678)y (12345678)

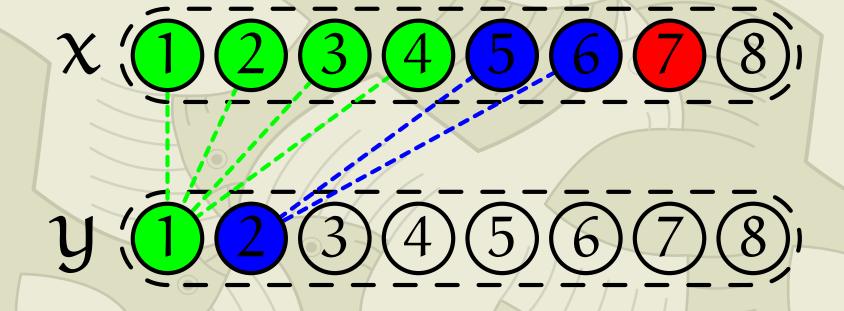
For about half of the members of D(x) the first check succeeds.



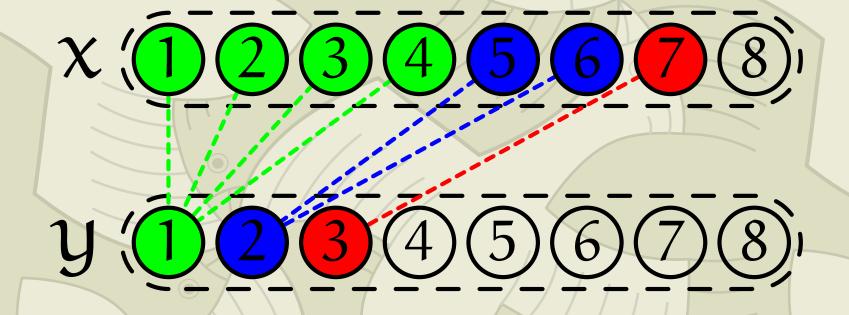
For about half of the remaining half



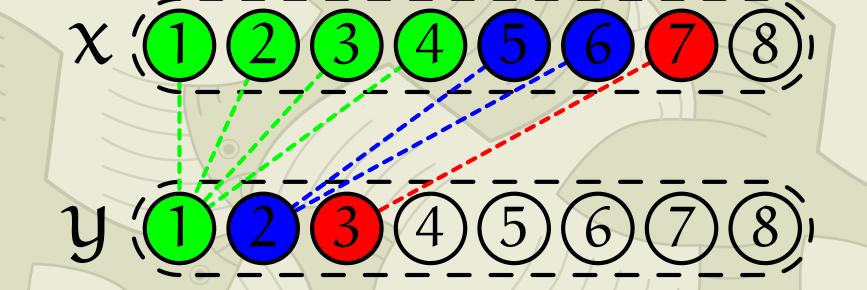
For about half of the remaining half the second check succeeds.



. For one of the remaining two



For one of the remaining two the "1-th" check succeeds.



 $|D(x)| \approx 1 + 2^0 + 2^1 + \dots + 2^{l-1} = 2^l$. Therefore, $l \approx \log_2(|D(x)|)$.

Conjecture

If 0 < p/q < 1 checks succeed on average then \mathcal{L} will require about

 $q/p(a+b-\log_{q/p}(a))$

checks on average.

Average Time-Complexity Results for \mathcal{D}

Theorem 2. [Average Time Complexity of \mathcal{D}] The average time complexity of \mathcal{D} over \mathbb{M}^{ab} is exactly $\operatorname{avg}_{\mathcal{D}}(\mathfrak{a}, \mathfrak{b})$, where $\operatorname{avg}_{\mathcal{D}}(\mathfrak{a}, \mathfrak{0}) = \operatorname{avg}_{\mathcal{D}}(\mathfrak{0}, \mathfrak{b}) = 0$, and

 $\begin{aligned} \operatorname{avg}_{\mathcal{D}}(a,b) &= 2 + (b-2)2^{1-a} + (a-2)2^{1-b} + 2^{2-a-b} \\ &- (a-1)2^{1-2b} + 2^{-b} \operatorname{avg}_{\mathcal{D}}(a-1,b) \\ &+ (1-2^{-b}) \operatorname{avg}_{\mathcal{D}}(a-1,b-1) \end{aligned}$

if $a \neq 0$ and $b \neq 0$.

From this we can derive the following bound:

 $\operatorname{avg}_{\mathcal{D}}(a,b) < 2 \max(a,b) + 2$ - (2 max(a,b) + min(a,b))2^{-min(a,b)} - (2 min(a,b) + 3 max(a,b))2^{-max(a,b)}

This bound is almost as good as you can get.

Discussion

- Up till recently it was a common belief that domain-heuristics have little—if not no—effect on the performance of arc-consistency algorithms. This belief is simply *not* true;
- Proof has been presented that \mathcal{D} is better than \mathcal{L} ;
- Evidence has been presented that *D* is "good;"
- Arc-consistency algorithms should prefer double-support checks at domain level.

Future Work

- 1. Incorporate the double-support heuristic into an algorithm which does not repeat support-checks;
- 2. Study the case where the average tightness differs from 1/2;
- 3. Study the effects that arc-heuristics have on the *average* timecomplexity of arc-consistency algorithms;
- 4. Generalise the notion of double-support check for arc-consistency to higher-order consistency.

Questions Amybody?