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Heuristics

Arc-consistency algorithms carry out support-checks to find out

about the properties of CSPs.

They use arc-heuristics to select the constraint that will be used for

the next support-check.

They use domain-heuristics to select the values that will be used for

the next support-check.



Domain-Heuristic L

Arc-Consistency Algorithms come in many different flavours.

The current state-of-the-art is called AC-7. It never repeats

support-checks and has a O(ed) space-complexity. AC-7 normally

comes equipped with a lexicographical domain-heuristic L.
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Domain-Heuristic D

A heuristic which seeks to maximise the number of double-support

checks.

This heuristic can be incorporated into most arc-consistency

algorithms.
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Case Study

Let’s study L and D if there are only two values in the domains of

the variables.

We shall assume there are two variables x and y. The size of the

domain of x will be a and that of y will be b.

A constraint M between x and y is a by b zero-one matrix. M

allows the “simultaneous assignment” x = i and y = j if and only if

Mij = 1.

Our objective is to find out, for each column i and each row j, if

there’s a 1 in the i-row and the j-th column.



Traces of L for the Two by Two Case
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Results

Definition 1. Let a and b be positive integers. The set containing

all a by b constraints will be denoted by Mab.

Definition 2. Let A be an arc-consistency algorithm and let M be

a constraint between x and y. The number of checks required by A
to remove the unsupported values from the domains of x and y will

be denoted checksA(M).



Definition 3. [Average Time-Complexity] Let A be an arc-

consistency algorithm. The average time-complexity of A over Mab

is the function avgA : N× N 7→ Q, where

avgA(a, b) =
∑

M∈Mab
checksA(M)/2ab.



Average Time-Complexity Results for L

Theorem 1. [Average Time Complexity of L] The average time

complexity of L over Mab is given by:

avgL(a, b) = a(2− 21−b) + (1− b)21−a + 2

b∑
c=2

(1− 2−c)a.

Following Flajolet and Sedgewick we obtain the following estimate:

avgL(a, b) ≈ ãvgL(a, b) = 2a+ 2b− 2 log2(a) − 0.665492.

For a = b = 10 we have

| avgL(a, b) − ãvgL(a, b)|/ avgL(a, b) < 0.5%.



Intuitive Proof for L’s Bound
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L requires about 2(a+ b− l) checks to find support for the

members of D(x) and D(y).
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Let’s assume that |D(x)| = 2k, for some integer k.
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For about half of the remaining half the second check succeeds.
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How to Find l
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. . . . For one of the remaining two the “l-th” check succeeds.



How to Find l
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|D(x)| ≈ 1+ 20 + 21 + · · ·+ 2l−1 = 2l. Therefore, l ≈ log2(|D(x)|).



Conjecture

If 0 < p/q < 1 checks succeed on average then L will require about

q/p(a+ b− logq/p(a))

checks on average.



Average Time-Complexity Results for D

Theorem 2. [Average Time Complexity of D] The average time

complexity of D over Mab is exactly avgD(a, b), where avgD(a, 0) =

avgD(0, b) = 0, and

avgD(a, b) = 2+ (b− 2)21−a + (a− 2)21−b + 22−a−b

− (a− 1)21−2b + 2−b avgD(a− 1, b)

+ (1− 2−b) avgD(a− 1, b− 1)

if a 6= 0 and b 6= 0.



From this we can derive the following bound:

avgD(a, b) < 2max(a, b) + 2

− (2max(a, b) + min(a, b))2− min(a,b)

− (2min(a, b) + 3max(a, b))2− max(a,b).

This bound is almost as good as you can get.



Discussion

• Up till recently it was a common belief that domain-heuristics have

little—if not no—effect on the performance of arc-consistency

algorithms. This belief is simply not true;

• Proof has been presented that D is better than L;

• Evidence has been presented that D is “good;”

• Arc-consistency algorithms should prefer double-support checks at

domain level.



Future Work

1. Incorporate the double-support heuristic into an algorithm which

does not repeat support-checks;

2. Study the case where the average tightness differs from 1/2;

3. Study the effects that arc-heuristics have on the average time-

complexity of arc-consistency algorithms;

4. Generalise the notion of double-support check for arc-consistency

to higher-order consistency.




