
Domain-Heuristics for Arc-Consistency
Algorithms

M.R.C. van Dongen

Compute Science Department UCC

Cork Constraint Computation Centre

Homepage: http://csweb.ucc.ie/~dongen.html
Email: dongen@cs.ucc.ie

June 19, 2002

http://csweb.ucc.ie/~dongen.html
dongen@cs.ucc.ie

Outline

• Arc-Consistency;

• Case Study;

• Results;

• Discussion and Future Work.

Arc-Consistency

1 2 3x

1 2 3y

Arc-Consistency

1 2 3x

1 2 3y

Heuristics

Arc-consistency algorithms carry out support-checks to find out

about the properties of CSPs.

They use arc-heuristics to select the constraint that will be used for

the next support-check.

They use domain-heuristics to select the values that will be used for

the next support-check.

Domain-Heuristic L

Arc-Consistency Algorithms come in many different flavours.

The current state-of-the-art is called AC-7. It never repeats

support-checks and has a O(ed) space-complexity. AC-7 normally

comes equipped with a lexicographical domain-heuristic L.

1 2 3x

1 2 3y
Checks = 0

1 2 3x

1 2 3y
Checks = 1

1 2 3x

1 2 3y
Checks = 1

1 2 3x

1 2 3y
Checks = 2

1 2 3x

1 2 3y
Checks = 3

1 2 3x

1 2 3y
Checks = 3

1 2 3x

1 2 3y
Checks = 4

1 2 3x

1 2 3y
Checks = 5

1 2 3x

1 2 3y
Checks = 6

1 2 3x

1 2 3y
Checks = 6

1 2 3x

1 2 3y
Checks = 7

1 2 3x

1 2 3y
Checks = 7

Domain-Heuristic D

A heuristic which seeks to maximise the number of double-support

checks.

This heuristic can be incorporated into most arc-consistency

algorithms.

1 2 3x

1 2 3y
Checks = 0

1 2 3x

1 2 3y
Checks = 1

1 2 3x

1 2 3y
Checks = 1

1 2 3x

1 2 3y
Checks = 2

1 2 3x

1 2 3y
Checks = 2

1 2 3x

1 2 3y
Checks = 3

1 2 3x

1 2 3y
Checks = 4

1 2 3x

1 2 3y
Checks = 5

1 2 3x

1 2 3y
Checks = 5

1 2 3x

1 2 3y
Checks = 6

1 2 3x

1 2 3y
Checks = 6

Case Study

Let’s study L and D if there are only two values in the domains of

the variables.

We shall assume there are two variables x and y. The size of the

domain of x will be a and that of y will be b.

A constraint M between x and y is a by b zero-one matrix. M

allows the “simultaneous assignment” x = i and y = j if and only if

Mij = 1.

Our objective is to find out, for each column i and each row j, if

there’s a 1 in the i-row and the j-th column.

Traces of L for the Two by Two Case

1

1

1

1 1

1

1 0

1

1 0

1 1

1 0

1 0

1

0

1

0 1

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

Traces of D for the Two by Two Case

1

1

1

1

0

1

1 0

1 1

1 0

1 0

1 0

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

1

1

1

1 1

1

1 0

1

1 0

1 1

1 0

1 0

1

0

1

0 1

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

1

1

1

1

0

1

1 0

1 1

1 0

1 0

1 0

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

Results

Definition 1. Let a and b be positive integers. The set containing

all a by b constraints will be denoted by Mab.

Definition 2. Let A be an arc-consistency algorithm and let M be

a constraint between x and y. The number of checks required by A
to remove the unsupported values from the domains of x and y will

be denoted checksA(M).

Definition 3. [Average Time-Complexity] Let A be an arc-

consistency algorithm. The average time-complexity of A over Mab

is the function avgA : N× N 7→ Q, where

avgA(a, b) =
∑

M∈Mab
checksA(M)/2ab.

Average Time-Complexity Results for L

Theorem 1. [Average Time Complexity of L] The average time

complexity of L over Mab is given by:

avgL(a, b) = a(2− 21−b) + (1− b)21−a + 2

b∑
c=2

(1− 2−c)a.

Following Flajolet and Sedgewick we obtain the following estimate:

avgL(a, b) ≈ ãvgL(a, b) = 2a+ 2b− 2 log2(a) − 0.665492.

For a = b = 10 we have

| avgL(a, b) − ãvgL(a, b)|/ avgL(a, b) < 0.5%.

Intuitive Proof for L’s Bound

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

L requires about 2(a+ b− l) checks to find support for the

members of D(x) and D(y).

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

Let’s assume that |D(x)| = 2k, for some integer k.

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

For about half of the members of D(x)

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

For about half of the members of D(x) the first check succeeds.

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

For about half of the remaining half

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

For about half of the remaining half the second check succeeds.

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

. . . . For one of the remaining two

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

. . . . For one of the remaining two the “l-th” check succeeds.

How to Find l

1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

|D(x)| ≈ 1+ 20 + 21 + · · ·+ 2l−1 = 2l. Therefore, l ≈ log2(|D(x)|).

Conjecture

If 0 < p/q < 1 checks succeed on average then L will require about

q/p(a+ b− logq/p(a))

checks on average.

Average Time-Complexity Results for D

Theorem 2. [Average Time Complexity of D] The average time

complexity of D over Mab is exactly avgD(a, b), where avgD(a, 0) =

avgD(0, b) = 0, and

avgD(a, b) = 2+ (b− 2)21−a + (a− 2)21−b + 22−a−b

− (a− 1)21−2b + 2−b avgD(a− 1, b)

+ (1− 2−b) avgD(a− 1, b− 1)

if a 6= 0 and b 6= 0.

From this we can derive the following bound:

avgD(a, b) < 2max(a, b) + 2

− (2max(a, b) + min(a, b))2− min(a,b)

− (2min(a, b) + 3max(a, b))2− max(a,b).

This bound is almost as good as you can get.

Discussion

• Up till recently it was a common belief that domain-heuristics have

little—if not no—effect on the performance of arc-consistency

algorithms. This belief is simply not true;

• Proof has been presented that D is better than L;

• Evidence has been presented that D is “good;”

• Arc-consistency algorithms should prefer double-support checks at

domain level.

Future Work

1. Incorporate the double-support heuristic into an algorithm which

does not repeat support-checks;

2. Study the case where the average tightness differs from 1/2;

3. Study the effects that arc-heuristics have on the average time-

complexity of arc-consistency algorithms;

4. Generalise the notion of double-support check for arc-consistency

to higher-order consistency.

