A Theoretical Analysis of the Average Time-Complexity of Domain-Heuristics for Arc-Consistency Algorithms

M.R.C. van Dongen (dongen@cs.ucc.ie) "homepage:" http://www.cs.ucc.ie/~dongen

April 24, 2001

Outline

 \bigcirc

lacksquare

 \bigcirc

lacksquare

 \bigcirc

 \bigcirc

Constraint Networks.

Arc-Consistency.

 \bigcirc

Case Study.

• Average Time-Complexity.

Discussion and Future Work.

Constraint Networks

lacksquare

Let $S \subseteq T$ be sets containing finitely many variables. For all $x \in T$ let D(x) denote the domain of x.

 C_S is called a *constraint* on S if $C_S \subseteq X_{x \in S} D(x)$.

 \bigcirc

If $t \in X_{x \in T} D(x)$ then t is said to satisfy C_S if the projection of t onto the variables in S is in C_S .

A tuple (X, C) is called a *constraint network* if X is a finite set of variables and C is a set of constraints between subsets of the variables in X s.t. C contains a unary constraint on every variable in X.

Arc-Consistency

 \bigcirc

A binary constraint network (X, C) is called arc-consistent iff for every $\alpha \in X$ it holds that $D(\alpha) \neq \emptyset$ and for every value $\nu \in D(\alpha)$ and for every constraint $C_{\{\alpha,\beta\}}$ in the constraint network there is a value $w \in D(\beta)$ s.t. w supports ν .

Here a $w \in D(\beta)$ supports $v \in D(\alpha)$ if $\alpha \prec \beta$ and $(v,w) \in C_{\{\alpha,\beta\}}$ or $\beta \prec \alpha$ and $(w,v) \in C_{\{\alpha,\beta\}}$, where $\cdot \prec \cdot$ is the "usual" ordering on the variables in X.

Heuristics

 \bigcirc

Arc-consistency algorithms carry out *support-checks* to find out about the properties of CSPs.

They use *arc-heuristics* to select the constraint that will be used for the next support-check.

They use *domain-heuristics* to select the values that will be used for the next support-check.

Some Existing Arc-Consistency Algorithms

Two well known arc-consistency algorithms are AC-3 with a $O(ed^3)$ and AC-7 with a $O(ed^2)$ worst-case time-complexity.

One of the nice properties of AC-7 is that—as opposed to AC-3—it doesn't repeat support-checks. As a matter of fact, its worst-case time-complexity is optimal and it behaves well in practice.

AC-3 on the other hand has nicer space-complexity characteristics than AC-7 (O(e + nd) vs. $O(ed^2)$).

Algorithm *L*

Arc-Consistency Algorithms come in many different flavours.

 \bigcirc

The current state-of-the-art is called AC-7. It never repeats support-checks. When it tries to find support for $a \in D(\alpha)$ ($b \in D(\beta)$) it will never carry out the check (a, b) $\in C_{\{\alpha,\beta\}}$ if a (b) is already known to be supported. AC-7 normally comes equipped with a lexicographical heuristic. Let \mathcal{L} be that algorithm.

Support-Checks

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

A zero-support check is a support-check on two values whose support-statuses are already known.

Support-Checks

 \bigcirc

A zero-support check is a support-check on two values whose support-statuses are already known.

A *single-support check* is a support-check which can find support for at most *one* value.

Support-Checks

 \bigcirc

A zero-support check is a support-check on two values whose support-statuses are already known.

A *single-support check* is a support-check which can find support for at most *one* value.

A *double-support check* is a support-check which seeks to find support for *two* values, whose support-statuses are unknown.

The Marketplace Principle

A successful single-support check resolves one uncertainty at the price of one consistency-check.

 \odot

A successful double-support check resolves *two* uncertainties at the price of one consistency-check.

The Marketplace Principle

A successful single-support check resolves one uncertainty at the price of one consistency-check.

 \odot

A successful double-support check resolves *two* uncertainties at the price of one consistency-check.

A single double-support check is twice as efficient on average than a single single-support check.

Min-Max Principle

 \bigcirc

lacksquare

To minimise the number of support-checks the number of successful double-support checks has to be maximised.

Min-Max Principle

 \bigcirc

 $oldsymbol{0}$

W

 \bigcirc

To minimise the number of support-checks the number of successful double-support checks has to be maximised.

Algorithm \mathcal{D}

lacksquare

 \bigcirc

0

An algorithm which uses a heuristic to maximise the number of *successful* double-support checks.

This heuristic can be incorporated into most arc-consistency algorithms.

Case-Study

 \bigcirc

0

 \bigcirc

Definition 1. [Trace] Let A be an arc-consistency algorithm, M an α by b constraint on α and β and

 $M_{i_1j_1}, M_{i_2j_2}, \ldots, M_{i_lj_l}$ the sequence of support-checks of \mathcal{A} to find the support of α and β . The trace of M w.r.t. \mathcal{A} is the sequence

 $(i_1, j_1, M_{i_1j_1}), (i_2, j_2, M_{i_2j_2}), \ldots, (i_l, j_l, M_{i_lj_l}).$

Traces of *L* for the Two by Two Case

Properties of Traces

 \bigcirc

Let \mathcal{A} be an arc-consistency algorithm which does not repeat support-checks, t a trace of a constraint in \mathbb{M}^{ab} w.r.t. \mathcal{A} and 1 the length of t.

There are exactly 2^{ab-l} constraints in \mathbb{M}^{ab} whose traces w.r.t. \mathcal{A} are equal to t.

The Trace Principle

0

 \bigcirc

Let t be a trace of a constraint in \mathbb{M}^{ab} w.r.t. some algorithm \mathcal{A} and l the length of t.

 \bigcirc

 \bigcirc

The average savings of the constraints in \mathbb{M}^{ab} whose trace w.r.t. \mathcal{A} equals t are given by $(ab - 1)2^{ab - 1}/2^{ab}$, i.e.

 $(ab - l)2^{-1}$

Traces of **D** for the Two by Two Case

Comparison for the Two by Two Case

 \bigcirc

A Lower Bound for $avg_{\mathcal{L}}(a, b)$

 \bigcirc

 $oldsymbol{O}$

 (\bullet)

 \bigcirc

The average time-complexity of \mathcal{L} is bounded from below

 $(2 - \epsilon)a + 2b + O(1) + O(a2^{-b}) \le \operatorname{avg}_{\mathcal{L}}(a, b),$

 $\epsilon = 2^{-s} + 2\sum_{k=0}^{s} {\binom{s}{k}} (-1)^{k} (2^{k+1} - 1)^{-1}.$

where

 \bigcirc

 \bigcirc

by

Tight Bounds for $\operatorname{avg}_{\mathcal{D}}(a, b)$ $\operatorname{avg}_{\mathcal{D}}(a, b) \leq \operatorname{upb}_{\mathcal{D}}(a, b)$ $= 2 \max(a, b) + 2$ $-(2 \max(a, b) + \min(a, b))2^{-\min(a, b)}$ $-(3 \max(a, b) + 2 \min(a, b))2^{-\max(a, b)}.$

 \bigcirc

 \bigcirc

 \bigcirc

0

 \bigcirc

Tight Bounds for $\operatorname{avg}_{\mathcal{D}}(a, b)$ $\operatorname{avg}_{\mathcal{D}}(a, b) \leq \operatorname{upb}_{\mathcal{D}}(a, b)$ $= 2 \max(a, b) + 2$ $-(2 \max(a, b) + \min(a, b))2^{-\min(a, b)}$ $-(3 \max(a, b) + 2 \min(a, b))2^{-\max(a, b)}$. Let \mathcal{A} be any arc-consistency algorithm. If $14 \leq a + b$ then

 \bigcirc

 $avg_{\mathcal{D}}(a, b) - avg_{\mathcal{A}}(a, b)$ $\leq upb_{\mathcal{D}}(a, b) - max(a, b)(2 - 2^{1 - min(a, b)})$ $= 2 - min(a, b)2^{-min(a, b)}$ $-(2 min(a, b) + 3 max(a, b))2^{-max(a, b)}.$

The First Twenty Cases

 \bigcirc

 \bigcirc

0

 $oldsymbol{O}$

Size	L	\mathcal{D}	\mathcal{L}/\mathcal{D}	Size	L	\mathcal{D}	\mathcal{L}/\mathcal{D}
1	1.000	1.000	1.000°	11	36.276	23.678	1.532
2	3.625	3.375	1.074	12	40.040	25.688	1.559
3	6.934	6.043	1.147	<u>0</u> 13	43.821	27.694	1.582
4	10.475	8.623	1.215	14	47.616	29.697	1.603
5	14.093	11.037	1.277	15	51.425	31.699	1.622
6	17.740	13.306	1.333	16	55.245	33.699	1.639
2	21.408	15.472-	1.384	17	59.075	35.700	1.655
8	25.095	17.571	1.428	18	62.915	37.700	1.668
9	28.802	19.628	1.467	19	66.763	39.700	1.682
10	32.529	21.660	1.502	20	70.619	41.700	1.693

Discussion

 \bigcirc

 \bigcirc

 Three good reasons have been presented why arcconsistency algorithms should prefer double-support checks at domain level.

• An explanation has been provided why $\mathcal D$ is better than

• Evidence has been presented that \mathcal{D} outperforms \mathcal{L} .

Evidence has been presented that *D* is "good."

Future Work

 \bigcirc

 \bigcirc

1. Incorporate the double-support heuristic into an algorithm which does not repeat support-checks.

2. Study the average time-complexity of \mathcal{L} and \mathcal{D} if there are more than two variables.

 \bigcirc

