
Using the Expressive Power of Constraint Programming

to Simplify the Task of Specifying DFX Guidelines

Marc van Dongen, Barry O’Sullivan and James Bowen
Department of Computer Science

UCC, Cork, Ireland
{dongen|osullb|J.Bowen}@cs.ucc.ie

Abstract

Increasingly, it is being realized that success in manufacturing requires integration between the various
phases of the product life cycle. One of the key aspects of this integration is that, during the design of an
artifact, due consideration should be given to facilitating the down-stream phases of the life-cycle. This is
frequently known as “Design for X” (or DFX), where the X ranges over such issues as manufacturability,
servicability and so on.

Vendors of leading CAD software have started to incorporate DFX features into their packages. In
addition, vendors have discovered from customer feedback that engineering companies require flexibility
as well as functionality: companies which use CAD packages want to specify their own DFX guidelines
as well as, or even instead of, relying on standard DFX guidelines supplied by the CAD vendors.

If engineers from user companies are to augment CAD packages with company-specific guidelines, it is
important that a language be provided which simplifies this task as much as possible. We are developing
a language for this purpose, based on the computational paradigm of constraints. The language, called
Galileo6, is intended to be generic in two senses: it can be used to encode guidelines from any product
domain and guidelines expressed in it can be applied to designs encoded in a variety of CAD formats.

In this paper, we report on an ESPRIT-funded project in which we are linking the Galileo6 language
to an electronics design CAD package called Visula. We overview the basic concepts of Galileo6 and
demonstrate its utility by showing how it can be used to encode some Design for Assembly guidelines
provided by one of the partners in the ESPRIT project. These guidelines have been successfully applied
to commercial PCB1 designs provided by a company involved in our ESPRIT consortium but, in order
to respect commercial confidentiality, in this paper we use a design from an electronics magazine for the
purposes of illustration.

1Printed Circuit Board

Using the Expressive Power of Constraint Programming
to Simplify the Task of Specifying DFX Guidelines2

Marc van Dongen, Barry O’Sullivan and James Bowen
Department of Computer Science

UCC, Cork, Ireland
{dongen|osullb|J.Bowen}@cs.ucc.ie

1 Introduction

Increasingly, it is being realized that success in manufacturing requires integration between the various phases
of the product life cycle. This integration is sometimes called Concurrent Engineering (CE). One of the key
aspects of CE is that, during the design of an artifact, due consideration should be given to facilitating the
down-stream phases of the life-cycle. This aspect of CE is frequently known as “Design for X” (or DFX),
where the X ranges over such issues as manufacturability, servicability and so on.

Vendors of leading CAD software have started to incorporate DFX features into their packages. In
addition, vendors have discovered from customer feedback that engineering companies require flexibility as
well as functionality: companies which use CAD packages want to specify their own DFX guidelines as well
as, or even instead of, relying on standard DFX guidelines supplied by the CAD vendors.

If engineers from user companies are to augment CAD packages with company-specific guidelines, it is
important that a language be provided which simplifies this task as much as possible. We are developing
a language for this purpose, based on the computational paradigm of constraints. The language, called
Galileo6, is intended to be generic in two senses: it can be used to encode guidelines from any product
domain and guidelines expressed in it can be applied to designs encoded in a variety of CAD formats.

In this paper, we report on some aspects of an ESPRIT-funded project in which we are linking the
Galileo6 language to an electronics design CAD package called Visula. In Section 2, we introduce the notion
of constraints; we indicate how they can be used to express multi-directional influences between an artifact
and its life-cycle environment and discuss how this capacity for multi-directional inference can be used to
support concurrent engineering. In Section 3, we overview the basic concepts of Galileo6, the constraint-
based language that we are developing. In Section 4, we demonstrate the utility of Galileo6 by showing
how it can be used to encode some Design for Assembly guidelines provided by one of the partners in the
ESPRIT project. These guidelines have been successfully applied to commercial PCB3 designs provided by
a company involved in our ESPRIT consortium but, in order to respect commercial confidentiality, in this
paper we use a design from an electronics magazine for the purposes of illustration. In Section 5, we provide
a concluding discussion.

2 Constraints and Constraint-Based Approaches to Concurrent
Engineering

Although the word “constraint” has many meanings in colloquial language, it has a specific meaning in the
Computer Science literature. In this context, a constraint is a declarative statement which specifies some
relationship that must be true about a group of entities; in other words, a constraint restricts the values
that may be assumed by a group of one or more parameters. A constraint network is a collection of such
constraints [5].

Our past research [1, 2, 4] has shown that frame-based constraint networks offer several features which
make them attractive as a basis on which to build a language for Concurrent Engineering applications. A
frame-based constraint network is one in which parameters are not required to be scalars; instead, they can
be either scalars or frames – complex data structures which can be organized in an inheritance hierarchy.

2The work reported here was funded by the European Commission under ESPRIT project number 20501, with acronym
CEDAS

3Printed Circuit Board

1

In a frame-based constraint network, frames can be used to represent: the artifact being designed; the
components from which the artifact is configured or the materials from which it is made; and the life-
cycle environment in which the artifact will be manufactured, tested and deployed. Constraints can be
used to express in an explicit way the mutual restrictions exerted on each other by artifact functionality,
component/material properties, and life-cycle processes.

A major attraction of constraint networks for Concurrent Engineering is that constraints support multi-
directional inference: information can flow in any direction through a network. Thus, for example, the
impact of a design decision on the options available to a test engineer can be determined by propagating the
design decision and its consequences throughout the network. Equally, if testing decisions are made early on,
the impact of these decisions can be reflected in restrictions placed on the designer’s freedom. By supporting
multi-directional inference, one constraint network can support both of these forms of interaction with equal
ease.

Consider, for example, the following simple Design for Testability guideline4:

the CPU crystal on a board should oscillate at a rate which does not exceed the fastest frequency
that can be accommodated by the available bed-of-nails.

Suppose we represent the CPU crystal as a frame called the_cpu_crystal which contains a slot called freq
that represents the frequency at which the crystal vibrates and suppose we represent the bed of nails tester
as a frame called the_test_machine which contains a slot called maxFreq that represents the maximum
frequency that can be handled by the tester. Then we could represent the above guideline by the following
statement in a constraint-based language like Galileo6:

the_cpu_crystal.freq =< the_test_machine.maxFreq.

Depending on the order in which the circuit designer and test engineer make their decisions, this constraint
can propagate restrictive influence between them. If the frequency of the CPU crystal is specified by the
circuit designer before the test machine has been selected by the test engineer, this constraint imposes a
lower limit on the required frequency handling capability of the test machine and, therefore, it limits the
test engineer’s choice of equipment. Alternatively, the flow of restrictive influence can go in the opposite
direction; if, for example, only one test machine is available in the factory and if a strategic decision has
been made that no new equipment can be bought, then this constraint limits the circuit designer’s freedom
of choice by limiting the oscillation frequency that he can choose for his CPU crystal. Thus, this simple
constraint is very versatile5.

3 An Overview of the Galileo6 Language

Galileo6 is the latest in a series of constraint programming languages for Concurrent Engineering that one
of the authors (Bowen) has been developing since the mid 1980s. The essential part of a Galileo6 program is
a collection of constraint statements. Indeed, if the constraints use only standard pre-defined concepts such
as the equality predicate or the addition function, a Galileo6 program will comprise nothing more than a set
of constraint statements and, because the program contains a set of constraints, they may be written in any
order. Typically, however, constraints for a real-world application can only be expressed if the pre-defined
concepts are augmented with application-specific concepts. These additional concepts can be defined locally
within the program or they can be defined in a separate compilation module and imported into the program.

Consider, for example the simple Galileo6 program in Figure 1. The line numbers in this figure are not
part of the program; they are used here simply for easy reference. Line 1 simply states that this is a main
compilation module, that is an executable program, rather than a library defining concepts to be exported
to other modules. Line 3 defines the concept of a brick as something which can be represented by a frame

4A similar guideline was used as an example in [2] but we present it again here to facilitate a self-contained paper.
5Indeed, this is not the end of the versatility. A user interacting with a Galileo6 program does not have to specify exact

values for parameters; the system can also extract information from interval specifications. Suppose, for example, that the
circuit designer has not yet decided on an exact crystal frequency although he knows it will be between 15 and 25 Mhz. He
can provide this looser information by inputting the specification 15 =<the cpu crystal.freq=< 25. This statement from
the user (which is also treated as a constraint) interacts with the constraint given above to cause the machine to infer that
the test machine.maxFreq >= 25.

2

1 module main(main).
2
3 domain brick =::= (length : real, breadth : real, height : real).
4
5 function volume(brick) -> real =::=
6 {B -> V : V = B.length * B.breadth * B.height}.
7
8 relation small(brick) =::= {B : volume(B) < 50}.
9
10 brick1 : brick.
11 brick2 : brick.
12 brick3 : brick.
13
14 all brick(B) : B.length > 30 implies volume(B) > 1000.
15
16 exists brick(B) : small(B).
17
18 exist 2 brick(B) : volume(B) > 500.

Figure 1: Simple Galileo6 program

structure that has three fields (length, breadth and height), each of type real; the word “domain” is
Galileo6-speak for data type, the word domain stemming from the constraint processing literature [5]. Lines
5-6 define a function, volume, which maps from a brick to its volume. Line 8 defines a relation or predicate,
small, over the bricks; it is specified that a brick is small if its volume is less than 50. Lines 10-12 declare
the existence of three objects, brick1, brick2 and brick3, each of type brick.

Lines 14 through 18 declare three constraints. Essentially, Galileo6 allows the full syntax of Predicate
Calculus (PC) to be used for specifying constraints. Line 14 uses the standard universal quantifier from PC
to specify that, for every brick, the following must be true: if its length exceeds 30 its volume must exceed
1000. Line 16 uses the standard existential quantifier from PC to specify that there must be at least one
brick which is small. As well as the standard quantifiers, Galileo6 also provides some additional quantifiers;
one of these is used in line 18 to specify that there must exist exactly two bricks whose volumes exceed 500.

4 An Example Application

Our purpose in this paper is to illustrate, using real world examples, how easy it is to express DFX guidelines
in Galileo6. In section 4.1, we present some Design For Assembly (DFA) guidelines that were provided by
one of the user companies in our ESPRIT CEDAS consortium. In section 4.2, we show how easily these
guidelines are encoded as constraints in Galileo6. In section 4.3, we illustrate these constraints in action by
applying them to a design represented in the Visula CAD package developed by the CAD vendor partner in
the CEDAS project. Although the guidelines have been applied successfully to real world designs, a design
taken from an electronics magazine is used for reasons of simplicity and commercial confidentiality.

4.1 Natural Language Guidelines

Part of the reason why it is so easy to implement guidelines in Galileo6 is that the language enables them to
be expressed in such a very high-level fashion that the Galileo6 statement of the guidelines is very similar to
the Natural Language expression of them. To illustrate this, we use a set of guidelines provided to us by one
of our partners in the CEDAS project; here they are, in exactly the words that were used by our engineering
partner:

• Background: Fiducial marks are unconnected copper pads on the board that are used by assembly
machines to ensure accurate placement of the components. There are two types of fiducial mark: Global

3

marks are used to register the position of the board; local marks are used with fine pitch components
which need greater placement accuracy.

• Rule 1: There must be three global fiducial marks positioned in three of the four corners of the board.
The centre of each mark should be at least 10mm from any edge of the board.

• Rule 2: Each component that has a lead pitch6 smaller than 0.025” must have two local fiducial marks
positioned in diagonally opposite corners of the component. Local fiducial marks should also be at least
10mm from the edge of the board.

• Rule 3: The preferred fiducial mark is 1mm in diameter, with 4mm clearance7. for global and 3mm
clearance for local marks. The clearance area should be dark and consistent in colour.

We have not rephrased these guidelines in any way and, with the exception of the stipulation that the
clearance area should be dark and consistent in colour, we have been able to apply all these guidelines
successfully to real designs. The only reason why the “colour” requirement could not be applied is that the
designs we have been asked to interface to did not store colour information. If such information had been
available, then the “colour” requirement also could have been implemented.

4.2 Encoding the Guidelines in Galileo6

In the process of applying a set of guidelines to a design, encoding the guidelines correctly in the form of a
program is crucial. We claim that using Galileo6 can significantly simplify the encoding of guidelines. We
hope to convince the reader of this by showing how the natural language guidelines from the previous section
have been encoded in Galileo6, by showing the close relationship between the constraints and the original
guidelines, and by pointing out the expressive power of the language.

The guidelines in Section 4.1 have been encoded in the Galileo6 program shown in Figure 2. We will
examine this program in detail below but, for now, it is useful to point out its overall structure. Line 1 simply
specifies that this is a main compilation module. Lines 26 through 43 contain the constraint statements
which implement the Natural Language (NL) guidelines given above. These constraint statements use some
predefined symbols (such as the < comparison operator and the * multiplication operator) but they also
use some application-specific concepts such as global, distance, clearance, min lead pitch. In line
3, some of these application-specific concepts are imported from a separate compilation module; others are
defined in lines 5 through 24.

In considering the program in detail, we will do so in a top-down fashion, starting with the constraints
and proceeding conceptually downwards to examine the definition of the application-specific concepts that
are referenced in these constraints.

There are four constraint statements in this program, even though the NL statement of the guidelines
appears to contain only three “rules”. Normally, a Galileo6 program contains exactly one constraint state-
ment for each NL guideline. The discrepency in this case is apparent rather than real; it is due to the fact
that the first two NL “rules” each contain two sentences and each of these sentences specifies a separate
guideline. This might suggest that there should be five constraints but, in fact, the second sentence of “rule”
2 specifies the same requirement as the second sentence of “rule” 1 — this is reflected in the fact that the
second sentence in rule 2 contains the word “also”.

The guideline expressed in the first sentence of “rule” 1,

There must be three global fiducial marks positioned in three of the four corners of the board.

is implemented by the constraint

exist 3 C in theBoard.corners:
exists fid(F): global(F) and distance(F, C) < 20 * mm.

6the least distance between any pair of adjacent pins
7twice the distance from the centre of the fiducial to the nearest component, where the distance from fiducial F to component

C equals the distance from the centre of F to the nearest pin of C

4

1 module main(main).
2
3 import pcb_concepts(distance/2, diagonal/3, inside/2, local/1, global/1).
4
5 constant mm =::= 100000.0.
6 constant inch =::= 2540000.0.
7
8 relation nearest_to(fid, position, positions) =::=
9 { (F,Ci,Corners) : distance(F, Ci) =< min([distance(F, C) | exists C in Corners]) }

10 with formats (positive ’of all ’, #3, ’, ’, #2, ’ is the nearest one to ’, #1
11 negative ’in ’, #3, ’, there is at least one closer to ’, #1, ’ than ’, #2).
12
13 function clearance(fid) -> number =::=
14 { F -> C : C = 2 * min(min(min([distance(F, Ic) | exists ic(Ic)]),
15 min([distance(F, Res) | exists res(Res)])),
16 min(min(min([distance(F, Cap) | exists cap(Cap)]),
17 min([distance(F, Con) | exists con(Con)])),
18 min(min([distance(F, Trn) | exists tran(Trn)]),
19 min([distance(F, Dio) | exists dio(Dio)])))) }
20 with format (’the clearance area of ’, #1).
21
22 function min_lead_pitch(ic) -> number =::=
23 { Ic -> L : L = min([distance(P1, P2) | existsdif P1 in Ic.pins, P2 in Ic.pins]) }
24 with format(’the minimum lead pitch of ’, #1).
25
26 exist 3 C in theBoard.corners:
27 exists fid(F): global(F) and distance(F, C) < 20 * mm.
28
29 all fid(F), E in theBoard.edges: distance(F, E) >= 10 * mm.
30
31 all fid(F):
32 inside(F, theBoard.edges) and abs(F.radius - 0.5 * mm) =< 0.1 * mm and
33 ((global(F) and clearance(F) >= 4 * mm) or
34 (local(F) and clearance(F) >= 3 * mm)).
35
36 all ic(I):
37 min_lead_pitch(I) < 0.025 * inch implies
38 existsdif fid(F1), fid(F2):
39 local(F1) and local(F2) and
40 (existsdif C1 in I.corners, C2 in I.corners:
41 diagonal(C1, C2, I.corners) and
42 nearest_to(F1, C1, I.corners) and nearest_to(F2, C2, I.corners) and
43 distance(F1, C1) =< 0.25 * inch and distance(F2, C2) =< 0.25 * inch).

Figure 2: Source Code for DFA program in Galileo6

which appears in lines 26-27 of the program. As will be shown later, when a constraint written in Galileo6 is
violated, an automatically generated NL paraphrase of the constraint is included in the error report that is
produced. The relationship between the first constraint in this program and the first sentence in rule 1 above
is highlighted by showing here the NL paraphrase that would be generated if the constraint were violated:

It must be true that:
there exist exactly 3 positions, C say, in the corners of the board,
with the following property:
there exists a fiducial, F say, such that:
F is a global fiducial and
the distance from F to C < 20 * mm.

It is hoped that the reader will agree the paraphrase is very similar to the original guideline sentence. This
similarity can be achieved because the very high level nature of the Galileo6 language enables a programmer
who is encoding DFX guidelines to craft his constraints so that they are conceptually similar to the original
NL guidelines; the similarity of generated paraphrases then follows automatically.

However, there is a slight difference between the above paraphrase and the original guideline, which
illustrates a common problem in the elicitation of expert knowledge, namely that experts rarely say what
they really mean. Note that the Galileo6 constraint states that there should be three corners of the board
each of which should have a global fiducial in it; this is what was really meant by the engineer who provided
the NL guidelines although it only became clear when we asked him for clarification. The original statement
of the guideline was ambiguous: not only was the meaning of “positioned in a corner” left vague but the
guideline could even have been interpreted as requiring nine global fiducials, three each in each of three

5

corners of the board.
Before we go on to consider the other constraints in this program, we will discuss some of the concepts

referenced in the first constraint. The constraint refers to a field corners in an object called theBoard; it
also refers to a domain fid. It also uses a unary predicate, global, and a binary function, distance, as
well as referring to a measurement unit called mm.

The predicate global and the function distance are among the concepts imported from a library module
called pcb concepts, as can be seen in line 3. The concept mm is defined in line 5 as the number 100000.0
because all dimensions in Visula are specified in terms of a unit called a “design unit” which is 0.00001 of a
millimetre.

Although the provenance of global, distance and mm is clear from the program, the two concepts
theBoard and fid seem to spring from thin air. In fact, as we shall now explain, they are automatically
defined by the interface to the Visula CAD package. The object theBoard is not defined in the program, by
contrast with the objects brick1, brick2 and brick3 which were declared explicitly in the simple program
shown in Figure 1. This is because the implementation of Galileo6 we are describing here has been modified
(as part of the CEDAS project) to interact directly with the Visula CAD package. Therefore, since the Visula
design descriptions generated by our partners always contain boards, by default in this implementation of
Galileo the object theBoard is assumed to exist and is assumed to denote the board described in a Visula
design description file. In essence, a Galileo6 program interacting with a Visula design description is treated
as if it contained the following statements:

domain position =::= (x:integer, y:integer).
domain edge =::= (start : position, end:position).
domain board =::= (corners : sequence of position,

edges : sequence of edge).
theBoard : board.

Thus, the object theBoard is assumed to be a structure which contains two fields, one a list (sequence) of
positions and one a list of edges; an edge is a structure which contains two fields, each of type position; a
position is a structure which contains two fields, each of type integer. When a Galileo6 program containing
an object called theBoard is applied to a Visula design description, the board attributes in the Visula
description are automatically copied into the structure called theBoard before any of the constraints are
executed.

The other concept referenced in this constraint which does not appear to be defined or imported in the
program is the domain fid. Again, this is a concept that is automatically defined because of the Visula
interface. In essence, a Galileo6 program interacting with a Visula design description is treated as if it
contained the following statement:

domain fid =::= (position: position,
radius: integer,
type: integer,
name: string).

The second constraint in this program, in line 29, encodes the parts of “rules” 1 and 2 which state that
fiducials should be at least 10 millimeters from the edges of the board:

all fid(F), E in theBoard.edges: distance(F, E) >= 10 * mm.

The similarity between the NL paraphrase that would be generated from this constraint

It must be true that:
for any fiducial, F say, and

edge, E say, in the edges of the board, the following is true:
the distance from F to E >= 10 * mm.

and the original sentences

The centre of each (global fiducial) mark should be at least 10mm from any edge of the board.
Local fiducial marks should also be at least 10mm from the edge of the board.

6

speaks for itself.
One point worth noting is the difference between the arguments given to the function distance in this

second constraint and those given to the function in the first constraint. This illustrates the fact that Galileo6
supports polymorphic functions. In the second constraint, the arguments given to the function comprise a
fiducial and an edge (a structure comprising a pair of positions) while in the first constraint the arguments
given to the function were a fiducial and a corner (a position).

The third constraint in this program, in lines 31-34 encodes “rule” 3 except for the “colour” stipulation
which cannot be implemented because the design databases that we have been asked to interface to did not
store colour information. This constraint also includes an additional requirement which was intended by
the engineer who gave us the rules but which he never stated explicitly: it states that every fiducial should
be inside the edges of the board. We could have made it a separate constraint but, since this constraint is
already quantified over all the fiducials, this seemed a natural place to add it. Once again, there is a clear
relationship between the Galileo6 statement

all fid(F):
inside(F, theBoard.edges) and abs(F.radius - 0.5 * mm) =< 0.1 * mm and
((global(F) and clearance(F) >= 4 * mm) or
(local(F) and clearance(F) >= 3 * mm)).

and the requirements that it expresses, as can be seen by comparing these requirements

The preferred fiducial mark is 1mm in diameter, with 4mm clearance for global and 3mm clearance
for local marks (and, implicitly, every fiducial should be inside the edges of the board).

with the NL paraphrase of the constraint:

It must be true that:
for any fiducial, F say, the following is true:

F is inside the edges of the board and
|the radius of F - 0.5 * mm| =< 0.1 * mm and
F is a global fiducial and
the clearance area of F >= 4 * mm

or F is inside the edges of the board and
|the radius of F - 0.5 * mm| =< 0.1 * mm and
F is a local fiducial and
the clearance area of F >= 3 * mm.

The notion of “preferred” in the given rule was ambiguous and it has been interpreted to mean that the
radius of each fiducial should be between 0.4mm and 0.6mm; hence the constraint statement.

One point worth noting about this constraint is the definition of the function clearance which it uses.
When we sought clarification, we were told that the the clearance of a fiducial is twice the minimum distance
of the fiducial to any other component. This is exactly how the function clearance/1 is defined in lines
13–20. This definition contains several expressions like this:

min([distance (F, R) | exists res(R)]).

Although this may appear daunting at first, it is actually standard Mathematical list notation. The domain
res (resistor) comes with our interface to Visula (just like the domain fid, as explained above) so the above
expression can be read as follows: the minimum of the elements in the list of distances from F to any resistor
R. The implementation of Galileo6 is not finished and one feature that has not been implemented yet is
domain inheritance hierarchy8. This means that, at the moment, for each type of component in the design,
an expression of the form min([distance ...]) has to be specified in this definition of clearance, so
there are expressions for resistors, capacitors, connectors and so on. However, the next release of Galileo6
will include an implementation of domain inheritance and at that stage the function clearance/1 can be
defined straightforwardly as follows:

8In previous implementations of the Galileo family there always has been the notion of domain hierarchies, but future
versions will come with extensions of this notion

7

function clearance(fid) -> real =::=
{ F -> C: C = 2 * min([distance(F, Comp) | exists component(Comp)]) }
with format (’the clearance area of ’, #1).

The fourth constraint in this program, in lines 36-43, encodes the first sentence in “rule” 2, which specifies
that if the minimum lead pitch of a component is less than 0.025”, then the component should have two local
fiducials in two diagonally opposite corners. The following NL paraphrase would be output if this constraint
were violated:

It must be true that:
for any integrated circuit, I say, the following is true:

the minimum lead pitch of I >= 0.025 * inch
or there exist different fiducials, F1 say, and F2 say, such that:

F1 is a local fiducial and
F2 is a local fiducial and
there exist different positions, C1 say, in the corners of I, and

C2 say, in the corners of I, such that:
C1 and C2 are diagonally opposite corners of the corners of I and
of all the corners of I, C1 is the nearest one to F1 and
of all the corners of I, C2 is the nearest one to F2 and
the distance from F1 to C1 =< 0.25 * inch and
the distance from F2 to C2 =< 0.25 * inch.

It is recalled that, in logic, sentences of the form A implies B are tantamount to sentences of the form not(
A) or B. This explains why the natural language explanation of this last constraint does not contain the
word “implies”.

4.3 Critiqueing the Design

In this section the results of critiqueing an example design with Galileo6 are presented. The Galileo6 program
from Figure 2 was used to test the design shown in Figure 3.

Two constraints are violated by the design. The first one is that defined in line 29 of Figure 2. It is the
constraint which states that each fiducial should be at least 10 millimeters from the edges of the board. The
other constraint which is violated by the design is the one defined in lines 36–43. This constraint is violated
because component UM2 in the centre of the design has a lead pitch of less than 0.025”, but has only one
corner with a local fiducial in it, whereas it should have local fiducials in two diagonally opposite corners.

After applying the Galileo6 program to the design, the report shown in Figure 4 is generated. For each
constraint which has been violated, the report gives a description of the constraint in English, and a list of
each combination of entities in the design which violated it. The descriptions of the constraints have been
generated automatically from the definitions of the constraints. Format strings from relation and function
definitions have been used to improve the “readability.”

5 Concluding Discussion

Our purpose in this paper was to illustrate how the notion of declarative constraint programming, as im-
plemented in the Galileo6 language, simplifies the task of writing programmes which check designs for
compliance with DFX criteria. We have done this by using real world DFX guidelines that were given to us
by a partner company in an ESPRIT consortium. These DFX guidelines were then applied to designs (only
one of which was presented in this paper) by interfacing Galileo6 with the commercial CAD package that is
used by the company which gave us the guidelines.

Our experience has shown us that, once guidelines have been understood and provided the necessary
information is available, encoding the guidelines in Galileo6 can be done in a straightforward manner. We
expect that, for an expert, encoding guidelines may be even easier than it was for us because he would not
have to seek advice to interpret the rules.

8

0FID2

0FID3

ORIGIN SCALE : = 10 mm.

0FID1

C2

C3

R5

D1

R3

R1

R2

TR1

C1

R4

con1

0FID5

R6

R7

R11

R10

R8

R9

TR2

TR3

UM2

0FID4U1

Figure 3: The Test Design

The following constraint was violated:
It must be true that:
for any fiducial, F say, and

edge, E say, in the edges of the board, the following is true:
the distance from F to E >= 10 * mm.

It was violated by each instance in the following:
INSTANCE:

(an edge from [78mm, 65mm] to [-70mm, 65mm],
a fiducial ’0FID1’ at position [-66mm, 57mm])

INSTANCE:
(an edge from [-70mm, 65mm] to [-70mm, -23mm],
a fiducial ’0FID1’ at position [-66mm, 57mm])

**
The following constraint was violated:
It must be true that:
for any integrated circuit, I say, the following is true:

the minimum lead pitch of I >= 0.025 * inch
or there exist different fiducials, F1 say, and F2 say, such that:

F1 is a local fiducial and
F2 is a local fiducial and
there exist different positions, C1 say, in the corners of I, and

C2 say, in the corners of I, such that:
C1 and C2 are diagonally opposite corners of the corners of I and
of all the corners of I, C1 is the nearest one to F1 and
of all the corners of I, C2 is the nearest one to F2 and
the distance from F1 to C1 =< 0.25 * inch and
the distance from F2 to C2 =< 0.25 * inch.

It was violated by each instance in the following:
INSTANCE:

(an integrated circuit ’UM2’ at position [-2mm, 22mm])
**

Figure 4: Violation Report

9

Although the expressive power of natural language is very high, ambiguities can arise easily. In the
previous section we have shown that even simple guidelines such as the ones we have used in our example,
can be ambiguous. Using Galileo6 as a specification language could prevent this.

References

[1] Bowen J and Bahler D, 1992. “Frames, Quantification, Perspectives and Negotiation in Constraint
Networks for Life-Cycle Engineering,” Int. J. of AI in Engineering, 7, 199-226.

[2] Bowen J and Bahler D, 1991. “Supporting cooperation between multiple perspectives in a constraint-
based approach to concurrent engineering,” J. of Design and Manufacturing, 1, 89-105.

[3] Bowen J and Bahler D, 1991. “Conditional Variable Existence in Generalized Constraint Networks,”
Proc. 9th Natl. Conf. on Artificial Intelligence (AAAI-91), 251-256.

[4] Bahler D, Dupont C and Bowen J, 1994, “An axiomatic approach that supports negotiated resolution
of design conflicts in concurrent engineering” Proc. International Conference on Artificial Intelligence
in Design (AID-94).

[5] Mackworth A, 1977, “Consistency in Networks of Relations,” Artificial Intelligence, 8, 99-118.

10

