How to Solve the Zebra Problem

M.R.C. van Dongen

Problem Formulation

There are five houses of different colours, inhabited by different nationals, with different pets, drinks, and sports.

Furthermore, there are the following 14 additional constraints which I have changed for the occasion:

1. The Englishman lives in the red house.

2. The Spaniard owns a dog.

3. The man in the green house drinks coffee.

4. The Irishman drinks tea.

5. The green house is to the right of the ivory house.
6. The Go player owns snails.

7. The man in the yellow house plays cricket.

8. The guy in the house int he middle drinks milk.

9. The Nigerian lives in the first house.¹

10. The judo player lives next to the man who has a fox.

11. The cricketer lives next to the man who has a horse.

12. The poker player drinks orange juice.

¹Originally, this was “at the end” but this would make the problem too easy.
14. The Nigerian lives next to the blue house.
14. The Nigerian lives next to the blue house.

The question is:
14. The Nigerian lives next to the blue house.

The question is: **Who owns the zebra**
14. The Nigerian lives next to the blue house.

The question is: **Who owns the zebra and who drinks Guinness?**
According to folklore, the Zebra Problem was designed by the English logician Charles Lutwidge Dodgson (a.k.a. Lewis Carroll. Born: 27 Jan 1832, Died: 14 Jan 1898).
Some History

According to folklore, the Zebra Problem was designed by the English logician Charles Lutwidge Dodgson (a.k.a. Lewis Carroll. Born: 27 Jan 1832, Died: 14 Jan 1898). I don’t have a reference. If you do, then please let me know.
Modeling the Problem

We can model the problem as a CSP. We number the houses (left to right) from 1 to 5. We then assign houses to things and we reduce the problem to the following:

- The number assigned to the person who drinks Guinness is the same as the number assigned to Guinness;
- The number assigned to the person who owns the zebra is the same as the number assigned to the zebra.
nationalities Englishman = \(A_1 \), Spaniard = \(A_2 \), Irishman = \(A_3 \), Nigerian = \(A_4 \), Japanese = \(A_5 \).

plays go = \(B_1 \), cricket = \(B_2 \), judo = \(B_3 \), poker = \(B_4 \), polo = \(B_5 \).

drinks coffee = \(C_1 \), tea = \(C_2 \), milk = \(C_3 \), orange juice = \(C_4 \), Guinness = \(C_5 \),

pets dog = \(D_1 \), snails = \(D_2 \), fox = \(D_3 \), horse = \(D_4 \), zebra = \(D_5 \).

colours red = \(E_1 \), green = \(E_2 \), ivory = \(E_3 \), yellow = \(E_4 \), blue = \(E_5 \).
If X is a letter then $X_i \neq X_j \iff i \neq j$. Furthermore, we have:

1. The Englishman (A_1) lives in the red (E_1) house: $A_1 = E_1$.
2. The Spaniard (A_2) owns a dog (D_1): $A_2 = D_1$.
3. The man in the green (E_2) house drinks coffee (C_1): $E_2 = C_1$.
4. The Irishman (A_3) drinks tea (C_2): $A_3 = C_2$.
5. The green (E_2) house is to the right of the ivory (E_3) house: $E_2 - E_3 = 1$.
6. The Go (B_1) player owns snails (D_2): $B_1 = D_2$.
7. The man in the yellow (E_4) house plays cricket (B_2): $E_4 = B_2$.
8. The guy in the house in the middle drinks milk (C_3): $C_3 = 3$.

10. The Judo (B_3) player lives next to the man who has a fox (D_3): $|B_3 - D_3| = 1$.

11. The cricketer (B_2) lives next to the man who has a horse (D_4): $|B_2 - D_4| = 1$.

12. The poker (B_4) player drinks orange juice (C_4): $B_4 = C_4$.

13. The Japanese (A_5) plays polo (B_5): $A_5 = B_5$.

14. The Nigerian (A_4) lives next to the blue (E_5) house: $|A_4 - E_5| = 1$.
Initial CSP.
Because of the **unary** constraints (Rules 8 and 9) \(A_4 \) must be 1 and \(C_3 \) must be 3.
We can remove the red values.

\[\begin{array}{c}
A_1 & \text{Englishman} \\
A_2 & \text{Spaniard} \\
A_3 & \text{Irishman} \\
A_4 & \text{Nigerian} \\
A_5 & \text{Japanese} \\
B_1 & \text{go} \\
B_2 & \text{cricket} \\
B_3 & \text{judo} \\
B_4 & \text{poker} \\
B_5 & \text{polo} \\
C_1 & \text{coffee} \\
C_2 & \text{tea} \\
C_3 & \text{milk} \\
C_4 & \text{orange juice} \\
C_5 & \text{Guinness} \\
D_1 & \text{dog} \\
D_2 & \text{snails} \\
D_3 & \text{fox} \\
D_4 & \text{horse} \\
D_5 & \text{zebra} \\
E_1 & \text{red} \\
E_2 & \text{green} \\
E_3 & \text{ivory} \\
E_4 & \text{yellow} \\
E_5 & \text{blue} \\
\end{array} \]
The resulting CSP is called **Node-Consistent**.
Some Values have no Support.

A_1 Englishman
A_2 Spaniard
A_3 Irishman
A_4 Nigerian
A_5 Japanese
B_1 go
B_2 cricket
B_3 judo
B_4 poker
B_5 polo
C_1 coffee
C_2 tea
C_3 milk
C_4 orange juice
C_5 Guinness
D_1 dog
D_2 snails
D_3 fox
D_4 horse
D_5 zebra
E_1 red
E_2 green
E_3 ivory
E_4 yellow
E_5 blue
Let’s mark them for removal and colour them red.
If we **propagate** the consequences of removing the red values, more values will lose support.
Remove

A_1 Englishman
A_2 Spaniard
A_3 Irishman
A_4 Nigerian
A_5 Japanese
B_1 go
B_2 cricket
B_3 judo
B_4 poker
B_5 polo
C_1 coffee
C_2 tea
C_3 milk
C_4 orange juice
C_5 Guinness
D_1 dog
D_2 snails
D_3 fox
D_4 horse
D_5 zebra
E_1 red
E_2 green
E_3 ivory
E_4 yellow
E_5 blue
and Propagate.
More Propagation.

A_1 Englishman
A_2 Spaniard
A_3 Irishman
A_4 Nigerian
A_5 Japanese
B_1 go
B_2 cricket
B_3 judo
B_4 poker
B_5 polo
C_1 coffee
C_2 tea
C_3 milk
C_4 orange juice
C_5 Guinness
D_1 dog
D_2 snails
D_3 fox
D_4 horse
D_5 zebra
E_1 red
E_2 green
E_3 ivory
E_4 yellow
E_5 blue
More Values will lose Support.
More Propagation...
We have reached a Fix-point
The resulting CSP is called **Arc-consistent**.
E_4’s domain contains 1.
The domains of the other E_i do not contain 1.
E_4 must be 1.

<table>
<thead>
<tr>
<th>A₁</th>
<th>Englishman</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₂</td>
<td>Spaniard</td>
</tr>
<tr>
<td>A₃</td>
<td>Irishman</td>
</tr>
<tr>
<td>A₄</td>
<td>Nigerian</td>
</tr>
<tr>
<td>A₅</td>
<td>Japanese</td>
</tr>
<tr>
<td>B₁</td>
<td>go</td>
</tr>
<tr>
<td>B₂</td>
<td>cricket</td>
</tr>
<tr>
<td>B₃</td>
<td>judo</td>
</tr>
<tr>
<td>B₄</td>
<td>poker</td>
</tr>
<tr>
<td>B₅</td>
<td>polo</td>
</tr>
<tr>
<td>C₁</td>
<td>coffee</td>
</tr>
<tr>
<td>C₂</td>
<td>tea</td>
</tr>
<tr>
<td>C₃</td>
<td>milk</td>
</tr>
<tr>
<td>C₄</td>
<td>orange juice</td>
</tr>
<tr>
<td>C₅</td>
<td>Guinness</td>
</tr>
<tr>
<td>D₁</td>
<td>dog</td>
</tr>
<tr>
<td>D₂</td>
<td>snails</td>
</tr>
<tr>
<td>D₃</td>
<td>fox</td>
</tr>
<tr>
<td>D₄</td>
<td>horse</td>
</tr>
<tr>
<td>D₅</td>
<td>zebra</td>
</tr>
<tr>
<td>E₁</td>
<td>red</td>
</tr>
<tr>
<td>E₂</td>
<td>green</td>
</tr>
<tr>
<td>E₃</td>
<td>ivory</td>
</tr>
<tr>
<td>E₄</td>
<td>yellow</td>
</tr>
<tr>
<td>E₅</td>
<td>blue</td>
</tr>
</tbody>
</table>
After Assignment $E_4 = 1$ and Arc-Consistency.
C_5’s domain contains 1.
The domains of the other C_i do not contain 1.
C_5 must be 1.
After Assignment $C_5 = 1$ and Arc-Consistency.
Start **MAC-Search** (Maintain Arc-Consistency).
Select C_1 as Current Variable.
After Assignment $C_1 = 4$ and Arc-Consistency.
Select B_1 as Current Variable.
After Assignment \(B_1 = 3 \) and Arc-Consistency.
All domains are empty. We must backtrack on B_1.

A_1 Englishman
A_2 Spaniard
A_3 Irishman
A_4 Nigerian
A_5 Japanese
B_1 go
B_2 cricket
B_3 judo
B_4 poker
B_5 polo
C_1 coffee
C_2 tea
C_3 milk
C_4 orange juice
C_5 Guinness
D_1 dog
D_2 snails
D_3 fox
D_4 horse
D_5 zebra
E_1 red
E_2 green
E_3 ivory
E_4 yellow
E_5 blue
Next Assignment to B_1.

A_1 Englishman
A_2 Spaniard
A_3 Irishman
A_4 Nigerian
A_5 Japanese
B_1 go
B_2 cricket
B_3 judo
B_4 poker
B_5 polo
C_1 coffee
C_2 tea
C_3 milk
C_4 orange juice
C_5 Guinness
D_1 dog
D_2 snails
D_3 fox
D_4 horse
D_5 zebra
E_1 red
E_2 green
E_3 ivory
E_4 yellow
E_5 blue
After Assignment $B_1 = 4$ and Arc-Consistency.
We must backtrack on C_1.

A_1 Englishman
A_2 Spaniard
A_3 Irishman
A_4 Nigerian
A_5 Japanese
B_1 go
B_2 cricket
B_3 judo
B_4 poker
B_5 polo
C_1 coffee
C_2 tea
C_3 milk
C_4 orange juice
C_5 Guinness
D_1 dog
D_2 snails
D_3 fox
D_4 horse
D_5 zebra
E_1 red
E_2 green
E_3 ivory
E_4 yellow
E_5 blue
Next Assignment to C_1.
After Assignment $C_1 = 5$ and Arc-Consistency.
Select B_4 as Current Variable.
After Assignment $B_4 = 2$ and Arc-Consistency.
Backtrack on B_4.
Next Assignment to B_4.

A_1 Englishman
A_2 Spaniard
A_3 Irishman
A_4 Nigerian
A_5 Japanese
B_1 go
B_2 cricket
B_3 judo
B_4 poker
B_5 polo
C_1 coffee
C_2 tea
C_3 milk
C_4 orange juice
C_5 Guinness
D_1 dog
D_2 snails
D_3 fox
D_4 horse
D_5 zebra
E_1 red
E_2 green
E_3 ivory
E_4 yellow
E_5 blue
After Assignment $B_4 = 4$ and Arc-Consistency.
All domains are singletons.
All constraints are satisfied.
We have solved the problem.

A₁ Englishman
A₂ Spaniard
A₃ Irishman
A₄ Nigerian
A₅ Japanese
B₁ go
B₂ cricket
B₃ judo
B₄ poker
B₅ polo
C₁ coffee
C₂ tea
C₃ milk
C₄ orange juice
C₅ Guinness
D₁ dog
D₂ snails
D₃ fox
D₄ horse
D₅ zebra
E₁ red
E₂ green
E₃ ivory
E₄ yellow
E₅ blue
$D_5 = 5$ (the zebra).
\(D_5 = 5 \) (the zebra). \(A_5 = 5 \) (the Japanese).
$D_5 = 5$ (the zebra). $A_5 = 5$ (the Japanese). Therefore, the Japanese owns the zebra.
To some this may have come as a complete surprise.
$C_5 = 1$ (Guinness).
$C_5 = 1$ (Guinness). $A_4 = 1$ (the Nigerian).
$C_5 = 1$ (Guinness). $A_4 = 1$ (the Nigerian). Therefore, the Nigerian drinks Guinness.
Given that Lagos has a large Guinness brewery, this should not have come as a complete surprise.