AC-3; an Efficient Arc-Consistency Algorithm with a
Low Space-Complexity

M.R.C. van Dongen
dongen@cs.ucc.ie

Cork Constraint Computation Centre
CS Department UCC
Western Road
Cork
Ireland

Technical Report TR-01-2002

June 2002

Available fromhttp:
/lcsweb.ucc.ie/"dongen/papers/4C/02/4C-01-2002.pdf

The Cork Constraint Computation Centre is supported by Science Foundation Ireland

Abstract

Arc-consistency algorithms are widely used to prune the search-space of Constraint Satisfac-
tion Problems CSPs). They usesupport-check$o find out about the properties GfSPs. They
usearc-heuristicsto select the constraint ardbmain-heuristicgo select the values for their

next support-check. We will demonstrate that domain-heuristics can significantly enhance the
average time-complexity of existing arc-consistency algorithms. We will combine Alan Mack-
worth’s AC-3 and John GaschnigBEE and equip the resulting hybrid withdouble-support
domain-heuristic thereby creating an arc-consistency algorithm oatle8l;, which has an aver-

age time-complexity which can compete wile-7 and which improves 0AC-7’s space-com-
plexity. AC-3; is easy to implement and requires the same data structurk€-8s We will

present experimental results to justify our average time-complexity claim.

Chapter 1

Introduction

Arc-consistency algorithms are widely used to prune the search-space of Constraint Satisfac-
tion Problems €SPs). We will demonstrate thatomain-heuristicsan significantly enhance

the average time-complexity of existing arc-consistency algorithms. We will integrate Alan
Mackworth’s AC-3 and John GaschnigBEE and equip the resulting hybrid with a so-called
double-supportiomain-heuristic thereby creating a general purpose arc-consistency algorithm
called AC-3,, which has an average time-complexity which can compete a@k7—the cur-

rent state-of-the-art in arc-consistency algorithms—and improveSii's space-complexity.

We will present theoretical and experimental results to justify our average time-complexity claim.

One reason for the increased performance®13, is that it uses the double-support heuristic
as opposed to the so-callEkicographicaldomain-heuristic, which is the most commonly used
domain-heuristic for arc-consistency algorithms. To find out about the difference between these
two heuristics we will study two algorithms callébdandD. £ uses the lexicographical heuristic
andD uses the double-support heuristic. We will assume that there are only two variables in the
CSP. As a andb become largel will require about2a + 2b — 21log,(a) — 0.665492 checks on
average. Here andb are the domain-sizes anak,(-) is the base logarithm. Ifa + b > 14
thenD will require an average number of support-checks which is strictly belowsx(a, b) + 2.

We will also provide an “optimality” result which indicates thauift b > 14 then no algorithm

can save two checks or more on average tRParOur results indicate that as a domain-heuris-
tic the double-support heuristic is to be preferred to the lexicographical heuristic, which is the
most commonly used domain-heuristic for arc-consistency algorithms. Our optimality result is
informative about the possibilities and limitations of domain-heuristics for arc-consistency algo-
rithms.

We will present experimental results from a comparison betwe&rs, which has & (e + nd)
space-complexity andC-7. As usual is the number of variables,s the number of constraints,
andd is the maximum domain size. @7 has aQ (ed) space-complexity and has proved to
require fewer support-checks than other general purpose arc-consistency algorithms. Our com-
parison involves random problem and problems from the constraint literature. The results of the
comparison demonstrate that, for the problems under consideraiing, can compete with
AC-7 both in time on the wall and in the number of support-checks.

The remainder of this paper is organised as follows. In Chapter 2 we shall provide basic

definitions and review constraint satisfaction. The lexicographical and double-support heuristics
will be presented in Chapter 3. In Chapter 4 we shall present our average time-complexity results.
In Chapter 5 we shall preseAC-3,;. We shall present our experimental results in Chapter 6. Our
conclusions will be presented in Chapter 7.

Chapter 2

Constraint Satisfaction

2.1 Basic Definitions

A Constraint Satisfaction Problefor CSP is a tuple(X, D, C'), whereX is a set containing
the variables of th€SP, D is a function which maps each of the variablesXirto its domain,
andC'is a set containing the constraints of (b8P

Let(X,D,C)beaCsPand leta € X andf € X \ { a } be two variables. Furthermore, let
D(a) ={1,...,a} # () be the domain ofy, and letD(5) = {1,...,b} # () be the domain of
5. A (binary) constraint\/ € C' betweem and(is ana by b zero-one matrix, i.e. it is a matrix
with a rows andb columns whose entries are either zero or one. A tgplg) in the Cartesian
product of the domains af andj is said tosatisfythe constraint\/ if M,;; = 1. HereM;; is
the j-th column of thei-th row of M. A valuei € D(«) is said to besupportedby j € D(3)
if M;; = 1. Similarly, ; € D(p) is said to be supported bye D(«) if M;; = 1. M is called
arc-consistentf for every: € D(«) there is aj € D(/3) which supports and vice versa. A
CSPis called arc-consistent if the domains of its variables are non-empty and its constraints are
arc-consistent. A variable is aneighbourof variableg if there is a binary constraint between
« and. Thedegreeof « is denotedleg(«). It is defined as the number of neighboursof

The densityof a constraint-graph with > 1 nodes and: edges is sometimes defined as
2e/(n* — n). For the duration of this paper and for compatibility reasons we shall stick to this
definition. Thetightnessof ana by b constraint)/ is defined ag — = > | Z?Zl M;;.

We will denote the set containing allby b zero-one matrices blyl®. We will call matrices,
rows of matrices, and columns of matrigem-zeraf they contain more than zero ones, and will
call themzerootherwise.

Therow-support(column-suppoitof a matrix is the set containing the indices of its non-zero
rows (columns). Anarc-consistency algorithmemoves all the unsupported values from the
domains of the variables of @SP until this is no longer possible. Bupport-checks a test to
find the value of an entry of a matrix. We will Writhj for the support-check to find the value
of M;;. An arc-consistency algorithm has to carry out the support-clﬂéﬁ;ﬂo find out about
the value ofM/;;. The time-complexity of arc-consistency algorithms is expressed in the number
of support-checks they require to find the supports of their arguments.

Let A be an arc-consistency algorithm and let be ana by b matrix. We will write
checks4 (M) for the number of support-checks required Hyto compute the row and col-
umn-support of\/.

The total number of support-checkd .4 over M is the functiontotaly : N x N — Q
defined asotal 4(a,b) = >, ;cpae checks 4 (M). Theaverage time-complexitf .A overM* is
the functionavg 4 : N x N — Q defined aswg 4(a, b) = total4(a,b)/2%.

A support-checkaj is said tosucceedf M;; = 1 and said tofail otherwise. If a sup-
port-check succeeds it is callsdccessfuaindunsuccessfudtherwise. Note that it follows from
our definition of average time-complexity that it is just as likely for a support-check to succeed
as itis for it to fail.

MZ] is called asingle-support checK, just before the check was carried out, the row-sup-
port status of was known and the column-support statug efas unknown, or vice versa. A
successful single-support cheMgf-;. leads to new knowledge about one thing. Either it leads to
the knowledge thatis in the row-support oft/ where this was not known before the check was
carried out, or it leads to the knowledge thas in the column-support af/ where this was not
known before the check was carried oM{-;. is called adouble-support chedk, just before the
check was carried out, both the row-support status ool the column-support statusjoivere
unknown. A successful double-support che\d% leads to new knowledge abowto things. It
leads to the knowledge thats in the row-support ofi/ and thatj is in the column-support of
M where neither of these facts were known to be true just before the check was carried out. A
domain-heuristic is called d@ouble-support heuristitf it prefers double-support checks to other
checks.

On average it is just as likely that a random double-support check will succeed as it is that
a random single-support check will succeed—in both cases one out of two checks will succeed
on average. However, the potential payoff of a double-support check is twice as large that of
a single-support check. This is an indication that at domain-level arc-consistency algorithms
should prefer double-support checks to single-support checks.

Another indication that arc-consistency algorithms should prefer double-support checks is
that in order to minimise the total number of support-checks it is a necessary condition to max-
imise the number of successful double-support chfes Dongen, 2002

2.2 Related Literature

In 1977 Mackworth presented an arc-consistency algorithm calted [Mackworth, 1977.
Together with Freuder he presented a lower boun@d ¢fd?) and an upper bound @ (ed?) for
its worst-case time-complexityMackworth and Freuder, 1985 The algorithm, as mentioned
before, has @ (e + nd) space-complexity.

AC-3, as presented by Mackworth, is not an algorithm as such; itciassof algorithms
which have certain data-structures in common and treat them similarly. The most prominent
data-structure used b&C-3 is a queuewhich initially contains each of the paifsy, 5) and
(B, «) for which there exists a constraint betweerand 5. The basic machinery oAC-3 is

4

such thatany tuple can be removed from the queue. For a “real” implementation this means
that heuristics determine the choice of the tuple that is going to be removed from the queue. By
selecting a member from the queue, these heuristics determine the constraint that will be used
for the next support-checks. Such heuristics will be cadledheuristics

Not only are there arc-heuristics faC-3, but also are there heuristics which, given a con-
straint, select the values in the domains of the variables that will be used for the next sup-
port-check. Such heuristics we will calbmain-heuristics

Experimental results from Wallace and Freuder clearly indicate that arc-heuristics influence
the average performance of arc-consistency algorifwadlace and Freuder, 19p2Gentet al
have made similar observatiofGentet al., 1997.

Bessere, Freuder and&yjin present another class of arc-consistency algorithms cstied
[Bessereet al., 1995; Bessireet al, 1999. AC-7is an instance of thaC-INFERENCESChema.

AC-7 saves support-checks by making inference. Inference is made at domain-level, where it
is exploited that/;; = M}; Here-T denotes transposition. @7 has an optimal upper bound

of O (ed?) for its worst-case time-complexity and has been reported to behave well on average.
AC-T7's space-complexity i® (ed).

In their papers, Bessie, Freuder and &jin present experimental results that 8@ 7 ap-
proach is superior to thaC-3 approach if the number of support-checks is concerned. If the
time on the wall is concerned, they observe th@t3 is a good alternative if checks are cheap
[Bessereet al., 1999. They present results of applicationsAC-3 andMAC-7 to real-world
problems. Her&AC-i is a backtracking algorithm which usa€-i to maintain arc-consistency
during searcliSabin and Freuder, 19p4

Van Dongen and Bowen present results from an experimental comparison bet@eand
AC-3;, which is a cross-breed between Mackworths-3 and Gaschnig'®EE [van Dongen
and Bowen, 2000; Mackworth, 1977; Gaschnig, 197®heir comparison only considered sup-
port-checks. In their settingC-3, was equipped with a lexicographical arc-heuristic. At the
domain-levelAC-3, uses a double-support heuristic. In their settinG;7 was equipped with
a lexicographical arc-heuristic and domain-heuristi€-3, has the same worst-case time-com-
plexity asAC-3. In van Dongen and Bowen’s setting it turned out th&t-3, was more ef-
ficient thanAC-7 for the majority of their30,420 random problems. Als@&cC-3, was more
efficient on average. These are surprising results becads®,, unlike AC-7, has to repeat
support-checks because it cannot remember them. They are also interesting Bezay$as
a better space-complexity tha&C-7 (O (e + nd) versusO (ed)). These results were the first
indication that domain-heuristics can improve arc-consistency algorithms.

Chapter 3

Two Arc-Consistency Algorithms

In this section we shall introduce the two arc-consistency algoritbrasdD. The two algo-
rithms only differ in their domain-heuristicL uses dexicographical heuristiandD uses a
double-support heuristidVe shall first present and then preserb.

From here on we shall sometimes u5€D) instead of using lexicographical domain-heuris-
tic (double-support domain-heuristic) and vice versa. This is justified because the algorithm
completely determines the heuristic and vice versa.

3.1 The Lexicographical Algorithm £

L does not repeat support-checks. It first tries to establish its row-support. It does this for each
row in the lexicographical order on the rows. When it seeks support for ribwvies to find the
lexicographically smallest column which supportsAfter £ has computed its row-support, it
tries to find support for those columns whose support-status is not yet known. It does this in the
lexicographical order on the columns. Whétries to find support for a columg it tries to find
it with the lexicographically smallest row that was not yet known to support

Pseudo-code fof is depicted in Figure 3.1 computes its support by removing the unsup-
ported rows and columns from the domains of the variables using two procedures: row
andremove_col. Without loss of generality we have assumed that the size of the constraints is
determined by the domains.

L is, in essence, Gaschnig’s version of Mackwortie'sise algorithm which is part of the
AC-3 machinery{Gaschnig, 1978; Mackworth, 19]/7£ only establishes row-support whereas
revise establishes both row-support and column-support.

L has been presented so as to highlight its essence. Using standard techniques the algorithm
can be transformed to use counters instead of the two-dimensionakhexkyd. With the use
of this technique the algorithm will have@ (a + b), that is, aO (d) space-complexityBessere
etal, 1993. Itis a straightforward exercise to prove correctness.of

constantUNSUPPORTED = —1;

procedure(a by b constraint)M/) = begin

/* Initialisation. */
for each rowr do begin

rsupp[r] = UNSUPPORTED;

for each colummr: do

checked[r]|[c] = UNSUPPORTED;

end,
for each column: do

csupp|c] = UNSUPPORTED;

/* Find row-support. */
for each rowr do begin
c=1;
while (¢ < b) and(rsupp[r] = UNSUPPORTED) do begin
if (M. = 1) then begin
rsupp[r] = ¢;
csupplc] = r;
end,
c=c+1;
end,
if (rsupp[r] = UNSUPPORTED) then
remove_row(r);
end,

/* Complete column-support. */
for each columre do begin
r=1,
while (r < a) and(csupp[c] = UNSUPPORTED) do begin
if (not checked|r][c]) then
if (M}, =1)then
csupp[c] = r;
r=r+1;
end,
if (csupp[c] = UNSUPPORTED) then
remove_col(c);
end;
end;

Figure 3.1: AlgorithmZ

constanftUNSUPPORTED = —1;
constanSINGLE = —2;
constanDOUBLE = -3;

procedureD(a by b constraintM) = begin
[* Initialisation. */
for each rowr do begin
rkind[r] = UNSUPPORTED;
rsupp(r] = UNSUPPORTED;
end;
for each columre do
csupp[c] = UNSUPPORTED;

[* Find row-support. */
for each rowr do begin
c=1;
/* First try to find support for using double-support checks. */
while (¢ < b) and(rsupp(r] = UNSUPPORTED) do begin
if (csupp[c] = UNSUPPORTED) then begin
I* M, is a double-support check. */
if (M. = 1) then begin
rkind[r] = DOUBLE;
rsupp|r] = ¢;
csupplc] = r;
end
c=c+1;
end;
c=1;
/* If ris still unsupported then try to find support using single-support checks. */
while (¢ < b) and(rsupp[r] = UNSUPPORTED) do begin
if (csupp|c] # UNSUPPORTED) then begin
I* M7 is a single-support check. */
if (M. = 1) then begin
rkind[r] = SINGLE;
rsupp|r] = ¢;
end;
end;
c=c+1;
end;
if (rsupp|r] = UNSUPPORTED) then
remove_row(r);
end;

/* Complete column-support. */
for each columre do begin
r=1,
while (r < a) and(csupp[c] = UNSUPPORTED) do begin
if (rsupp[r] < ¢) and(rkind[r] = DOUBLE) then
if (M7, = 1) then begin
csupp(c] = r;
rsupp[r] = ¢;
end,
r=r+1;
end
if (csupplc] = UNSUPPORTED) then
remove_col(c);
end,
end;

Figure 3.2: AlgorithniD

3.2 The Double-Support Algorithm D

In this section we shall introduce the second arc-consistency algorithm @qalle®) uses a
double-support heuristic as its domain-heuristic. The heuristic has underlying lexicographical
heuristics to break ties.

D’s strategy is a bit more complicated than thatf Like £ it does not repeat sup-
port-checks. The algorithm will first find its row-support in the lexicographical order on its
rows. When it tries to find support for rowit will first use double-support checks. It does this
by finding the lexicographically smallest colummwhose support-status is not yet known. When
there are no more double-support checks left tPenill use single-support checks to find sup-
port for rowr. Finally, D will use single-support checks for the columns for which no support
had been established.

We have depicted pseudo-code 1iin Figure 3.2.D is implemented in @ (a + b), that is
a0 (d), space-complexity.

It easy to prove thab does compute its row-support correctly. To prove that it also computes
its column-support correctly is not much more difficult. Immediately aftdras established its
row-support, for every row each of the following holds:

1. rkind[r] # DOUBLE andrsupp|r] = UNSUPPORTED if and only if for every column
c the checkM”, has been carried out and failed;

2. rkind[r] # DOUBLE andrsupp|r| # UNSUPPORTED if and only if r's support was
established with a single-support check. Note that for every unsupported ceoltimen
check M’ has already been carried out whil tried to establish support far using
double-support checks;

3. rkind[r] = DOUBLE if and only if ’s support was established with a double-support
check. Note that for every unsupported columg rsupp[r] the checkM?’, has already
been carried out and that for every unsupported colamnrsupp|r] the check);, has
not been carried out.

Together, Point 1 and 2 imply thatikind[r] # DOUBLE then for each unsupported column

c the checkM!, has already been carried out. To complete its column sugpdtterefore

only considers rows for which rkind[r] = DOUBLE and unsupported columnsfor which
rsupp|[r] < c¢. The remainder of the proof is easy because Point 3 is maintained as an invariant
while D completes the computation of its unsupported columns.

It is important to point out that the first two for-each statements inRhegorithm can be
avoided. The statements in the first for-each statement can be integrated with the third for-each
statement by putting them at the start of that third for-each statement statement. The statements
can be put just before ore just after the assignment 1. The second for-each statement can
be avoided by representing a value the domains of a variable by a tuple, csupp[c|). The
second members of the tuples should be initialised s UPPORTED before the first call to
D. A good time to do this is when the domains are initialised. Furthermore, the second members
of the tuples should be set it ONSUPPORTED at the end of the last for-each statement. A

good way to do this is by adding an extra else-clause for the last if-statement (it corresponds to
the case wheresupp[c] # UNSUPPORTED). This will ensure that each second member of
the tuples iISUNSUPPORTED at the start of every call t®. The last transformation does not

affect the space-complexity.

10

Chapter 4

Average Time-Complexity Results

In this section we shall present average time-complexity results &dD. The proofs are long
and tedious and due to space limitations they have been omitted. The reader is referaed to
Dongen, 200Rfor proof and further information.

The remainder of this section is as follows. We shall first presergxactformula and
a good approximation fatvg - (a,b). Next we shall present aexactformula and a tight upper
bound foravgy(a, b). Finally, we shall present an “optimality” result ferg, (a, b) and compare
avg,(a,b) andavgy(a,b).

Theorem 4.1 (Average Time Complexity ofC) Leta andb be positive integers. The average
time-complexityve - (a, b) of £ overM® is given by

avge(a,b) = a(2—2"7") + (1 - b)2'""+2) (1-279"

c=2
Following [Flajolet and Sedgewick, 1996, Pagd %& obtain the following accurate estimate:
avg,(a,b) ~ avg,(a,b) = 2a + 2b — 2log,(a) — 0.665492.

Here,log,(-) is the base logarithm. This estimate is already good for relatively smadhdb.
For example, forn = b = 10 we have| avg,(a,b) — avg,(a,b)|/ avg,(a,b) < 0.5%.

Theorem 4.2 (Average Time Complexity ofD) Leta andb be non-negative integers. The av-
erage time-complexityvgy(a, b) of D overM® is given byavgy(a,b) if a = 0 or b = 0, and
by

avgp(a,b) = 24+ (b—2)2"" 4 (a —2)2" P 42270 — (g —1)21%
+ 2 %avgy(a — 1,0) + (1 — 27 %) avgp(a — 1,0 — 1)

if a # 0 andb # 0.

11

Let « and b be positive integers such that+ b > 14. The following upper bound for
avgp(a, b) is presented ifivan Dongen, 2001; 2002

avgp(a,b) < 2max(a,b) + 2
— (2max(a, b) 4+ min(a, b))2~ min@b)
— (2min(a, b) + 3max(a, b))2~ max(@b),

It is a relatively easy exercise to prove that a value that requires support from a domain of
sized requires2~4 3% 271 = 2 — 214 ~ 2 checks on averagkvan Dongen, 2002 As
a consequencany arc-consistency algorithm will require at least ab?uiax(a,b) checks on
average. We can use this and the upper boundwgy,(a,b) to derive the important result
that D is “almost optimal,” because if4 < a + b, thenavgy(a,b) — avg 4(a,b) < 2 for any
arc-consistency algorithd.

It is not difficult to see that theninimumnumber of support-checks required Byis a +
b — 1. This implies that ifa + b > 14 and if « andb are approximately the same then the
minimumnumber of support-checks required Bys almost the same as theeragenumber of
support-checks required (5!

D is a better algorithm thaf because its upper bound is lower than the bound that we
derived forL. Whena andb get large and are of the same magnitude then the difference is about
a+ b — 2log,((a + b)/2) which is quite substantial.

At this point it may be interesting to state that for each algorithne { £,D } we have
verified the formula forwvg 4(a, b) for 1 < a, b < 6. We did this by applying4 to each of the
matrices inM** and by computing the total numb&ly, of support-checks which were required.
We have verified thal’, was exactly2?’ avg ,(a,b). This is comforting becausevg ,(a, b) is
defined as) e checks 4 (M) /2% and if our analysis is correct then this ought to be exactly
/2%,

12

Chapter 5
The AC-3; Algorithm

In this section we shall briefly descril#e -3, and sketch a correctness proof. We assume famil-
iarity of the reader withAC-3.

@ = set containing all arcs in the constraint graph;

while (Q # 0) do begin
select and remove any afex, 3) from Q;
if (3, a) is alsoin@ then begin
remove(8,) from Q;
useD to simultaneously revis®(«) andD(3) using the constraint betweenand3;
if (D(a) = 0) then
returnwipeout;
else begin
if D(«) has changed then
for each neighbouy # B of ado@Q = QU {(~v,a) };
if D(B) has changed then
for each neighbouy # aof 3do@Q = QU {(v,8) };
end
end
else begin
use Mackworth's-evise to reviseD(«) using the constraint betweenand3;
if (D(a) = 0) then
returnwipeout;
else if D(«) has changed then
for each neighbouy # aof 5do@Q = QU {(v,0) };
end
end;

Figure 5.1: Algorithm AC-3

We have depictedC-3, in Figure 5.1. The machinery @fC-3; is inspired by Mackworth’s
AC-3 and Gashnig'DEE [Mackworth, 1977; Gaschnig, 19/8 AC-3, uses a queue of arcs
just like AC-3. If AC-3,'s arc-heuristics select the afev, 3) from the queue and if the reverse
arc (4,) is not in the queue theAC-3, proceeds likeAC-3 by revisingthe domainD(«)
of a using the constraind/ betweenx and 3. Here, to revise a domain using constrairt
means to remove the unsupported values from that domain using the conkfraff@-3; uses
Mackworth’srevise to reviseD(«) with M. If the domainD(«) of o has changed due to the

13

revision then for each neighboyr # (3 of a the arc(~v,«a) is added to the queue if it was
not in the queue. The difference betweg@-3 and AC-3; becomes apparent wheXC-3,'s
arc-heuristic selects the afev, 5) from the queue and when the reverse @fca) is also in
the queue. If this is this case the&c-3, also removes 3, o) from the queue and uséd3 to
simultaneously revise the domains@find3. Arcs are added to the queue in a similar way as
described before.

In the implementation oAC-3, it is required to find out if the domain of a variable has
changed as a result of a revision. Mackwortiegise already allows for this. FaP this is not,
yet, possible. However, if we add two additional argument® t@ne for each of the domains,
which are set t&’'ALSE by D if no change occurred to the domain they belong to anfROE
otherwise then we can cheaply find out about changes to these domains. The additional overhead
to D does not change its time-complexity.

AC-3; inherits its O (ed®) worst-case time-complexity an@ (e + nd) space-complexity
from AC-3, and from the fact thae® has a0 (d) space-complexity.

14

Chapter 6

Experimental Results

In this section we present some results from a compariseiced,; againstAC-3 andAC-7. The
organisation of this section is as follows. In Section 6.1 we observe that there is a problem in
the literature which concerns the reproducability of experiments which inwdA@ solvers. In
Section 6.2 we shall describe the experiment. In Section 6.3 we shall present and discuss our
results A summary will be presented in Section 6.4.

6.1 Reproducability

One of the most important applications of arc-consistendyA< search. Therefore, arc-con-
sistency algorithms1; and.A, are frequently compared by: embeddidginto MAC-algorithm
M;, fori € {1,2}, and to use the results of the comparison betwkénand M, to compare
A; and A,. To compare the ratio between the support-checks that were requitdg &yd A,
one simply divides the checks that were requiredMdy by the checks that were required by
M. To compare time on the wall one uses a similar approach.

This does not always result in a fair comparison. For exampte, and M, may use a
different variable ordering heuristic during search. Even with commonly used heuristics there
may still be differences. For example, a standard minimum domain size ordering heuristic which
uses a maximum degree ordering as a tie-breaker does not rule out the possibility of ties and the
choice of the next variable can make the difference between finding an easy solution or getting
lost in the search space. FBRLFPA#11 for example, fora minimum domain size variable
ordering heuristic OUMAC-3 solver required 1,453 seconds, 1,191,650,012 support-checks, and
1,928,872 backtracks to find the first solution on a 1000 MMgz L Latitude! whereas Bessie,
Freuder and Bgin report a solution time of 36.31 seconds for théC-3 solver on a 200 MHz
PC[Bessereet al, 1999. Itis obvious that the difference between the two is not a representative
of the difference between the underlying arc-consistency components.

Gomes, Selman, and Crato study the effects of some commonly used variable ordering
heuristics on the variability in time to find the first solution in backtrack seaf@omeset
al., 1997. They observe that anomalies do occur and present remedies to overcome them.

10Our MAC-3, solver required 990 seconds, 582,777,218 support-checks, and 1,928,872 backtracks.

15

Exact information about variable ordering heuristicsNGXC search is very scarce in the lit-
erature. This is a serious problem. We hope that future papers will contain sufficient information
about these heuristics so as to facilitate easy reproducibility.

6.2 The Experiment

We do not have our own implementation®t-7. It is for this reason and for reasons as laid out
in Section 6.1 that we decided not to U4AC searchers to compare their underlying arc-con-
sistency components. To compak€-3,; againstAC-7 we have taken results from Besse,
Freuder and Bgin as published itBessereet al, 1999 and compared them against our own
results. Our own algorithms were run on a 1000 MI&zLL L atitude. To compare our times
against Bessire, Freuder and &jin’s times, we divided their times by 5 because their experi-
ments were carried out on a 200 MiRentiumPC [Bessereet al,, 1999.

The problem set consists of random problems and Radio Link Frequency Assignment Prob-
lems RLFAPsS). The objective for eacBSPis that it be made arc-consistent or to decide that
this is not possible.

The randomCSPs consist of four groups, each of which is uniquely determined by a tuple
(n,d,p1,pe). Heren is the number of variabled,is the (uniform) size of the domaing, is the
density of the constraint-graph, apglis the (uniform) tightness of the constraints. Each group
contains 50 randoraSPs. The four groups that we will consider are given by:

(150, 50,0.045,0.500) Under-constrainedSPs. To make these problems arc-consistent re-
quires little constraint propagation;

(150,50,0.045,0.940) Over-constraine@SFs. To decide that these problems cannot be made
arc-consistent requires little constraint propagation;

(150,50,0.045,0.918) Low density CSPs at the phase-transition. To make these problems
arc-consistent or to decide this is not possible requires much constraint propagation;

(50,50,1.000,0.875) High densityCSPs at the phase-transition. To make these problems
arc-consistent or to decide this is not possible requires much constraint propagation.

TheRLFAP Problems were obtained froftp://ftp.cs.unh.edu/pub/csp/archive/
code/benchmarks . To generate the random problems, we used Frost, Dechter,eBessi
and Regin’s random constraint generator, which is available fhatp://www.lirmm.fr/
“bessiere/generator.html . For reproducability purposes, it should be mentioned that
the generator was run with seed 0.

The algorithms that were compared &@-7 (calledAC-7 BFRfrom here on) as presented
in [Bessereet al, 1999, AC-3 (calledAC-3 BFRfrom here on) as presented[iBessereet al.,
1999, our implementation oAC-3, and our implementation @&C-3,. The arc-heuristic that was
used forAC-3 andAC-3, prefers ard o,) to (o', 3") if s4 < so OF if 5o, = Sov A dy, < dy OF
So = S Ny = da//\S@ < Sp Ors,, = S Ny = do//\Sg = Sﬁ//\dﬂ < dﬁ/, WhereSI = |D(ZL’)’

16

andd, = deg(x). This very expensive heuristic is better fac-3; than a lexicographical
heuristic with which it almost “degenerates” Ac-3.

It is interesting to mention that a lexicographical arc-heuristicAGr3, does not work as
well as the more expensive heuristic mentioned before. Always preferring the lexicographically
smallest ar¢ a, 3) makes it less likely that3,) is also in the queue and this cauges-3; to
“degenerate” tAC-3.

6.3 Results

Here we shall present and discuss the results for the random aRd BA¢® problems.

(150,50, 0.045,0.500) (150, 50,0.045,0.940)

underconstrained overconstrained
checks time checks time
AC-3 BFR 100,010 0.016 514,973 0.074
AC-7 BFR 94,030 0.038 205,070 0.058
AC-3 99,959 0.022 135,966 0.013
AC-3; 50,862 0.019 69,742 0.007

(150,50,0.045,0.918) (50,50,1.000,0.875)

phase-transition/sparse phase-transition/dense

checks time checks time

AC-3BFR AC 2,353,669 0.338 2,932,326 0.382

IC 4,865,777 0.734 8,574,903 1.092

AC-7BFR AC 481,878 0.154 820,814 0.247

IC 535,095 0.184 912,795 0.320

AC-3 AC 2,254,058 0.162 4,025,746 0.302

IC 2,602,318 0.196 6,407,079 0.491

AC-3y AC 1,734,362 0.140 2,592,579 0.245

IC 2,010,055 0.171 4,287,835 0.394

Table 6.1: Average Results for Random Problems

The results for the random problems are presented in Table 6.1. The columns “checks” and
“time” list the average time and average number of support-checks. For the problems on the
phase-transition we have separated the results for problems that could be made arc-consistent
and problems which could not be made arc-consistent. The former group is marked by the letters
“AC” in the second column and the latter group is marked by the lett€sih the second
column. We shall first discuss the random problems and then the remaining problems.

For the underconstrained problem€s-3 BFR requires (slightly) more checks thacC-3.

That both algorithms require almost the same number of checks is probably caused by the fact
that these problems are “almost” arc-consistent so that most arcs have to be checked only once.
AC-3 BFRrequires less time. This may be caused because it has an arc-heuristic which requires

17

less overhead thawC-3's. It is difficult to explain the differences betweac-3 BFRandAC-3.
Sometimes the former algorithm is better and sometimes the other.

AC-3, always requires fewer checks thag-3 BFRand thanAC-3. AC-3; always requires
less time tharAC-3. Only for the underconstrained problems dé€s3 BFRrequire less time.

For the remaining classesC-3, is always better in time. This is consistent with the literature
because algorithms which try to be clever by making more inferenceAlad (BFR) waste
time. AC-3is notbetter in time tharAC-3,. This is caused because its arc-heuristic is the same
as that ofAC-3,; and because this heuristic requires overhead. The difference betwesd-the
andAC-3, is mainly caused byC-3, having a better domain-heuristic. It is interesting to notice
thatAC-3,; seems to be a lot better thac-3 BFRandAC-3 for the overconstrained problems.
ApparentlyAC-3; is a lot better at detecting such problems.

AC-3; is better in time and checks th&tT-7 BFR for the underconstrained and overcon-
strained problems. It is interesting th&C-3, is also much better thaAC-7 BFR for the over-
constrained problems. For the problems at the phase-transiien BFR becomes better than
AC-3; in the number of checks. This should not come as a surprise besai3eBFR does
not repeat checks whereag-3, has to repeat them. The difference in checks is quite signifi-
cant. AC-3; performs better in time in the sparse area in the phase-transition region. It performs
marginally better in time in the dense area if problems can be made arc-consistent. For the sparse
problems in the phase-transition which cannot be made arc-consistent the ratio between the time
required byAC-3, and that required bjC-7 BFRis approximately 1.23 which is significant.

We believe it is fair to say that overaliC-3; can compete wittAC-7 BFR both in time on
the wall and checks. Outside the phase-transition3, performs better thaAC-7 BFR both
in time and checks. In the phase-transitid@-3,; requires more checks thaxC-7 BFR. Only
for the sparse problems in the phase-transition shades,; be preferred teAC-7 BFRif one
wishes to save time. @-7 should be preferred for dense problems in the phase-transition.

AC-3 BFR AC-7 BFR AC-3 AC-3
checks time checks time checks time checks time
RLFAP#3 615,371 0.050 412,594 0.138 615,371 0.124 267,532 0.092
RLFAP#5 1,735,239 0.126 848,438 0.232 833,282 0.252 250,797 0.136
RLFAP#8 2,473,269 0.168 654,086 0.168 1,170,748 0.420 25,930 0.040
RLFAP#11 971,893 0.072 638,932 0.212 971,893 0.268 406,247 0.186

Table 6.2: Average Results for RLFAP Problems

The results for theRLFAP Problems are presented in Table 6.2. ForRig&AP problems
AC-3 BFR performs better thaAC-3, for Problems 3, 5, and 11. This is consistent with our
findings for the random problems because these problems are relatively easy. Problems 3 and 11,
for example, are already arc-consistenC-8; does significantly better thakiC-3 BFR for RL-
FAP#8both in time and checks. This is also consistent with our findings for the overconstrained
problems becauseLFAP#8cannot be made arc-inconsistent and is relatively easy.

AC-3; performs better in time and checks thad-7 BFRfor all problems. Again, the results
for RLFAP#8are consistent with our findings for the overconstrained problems. The results for

18

the other problems are also consistent with the results we found for the random problems because
theRLFAP Problems are not in the phase-transition region and are relatively easy.

6.4 Summary

We have presented results from a comparison betwe€eg, AC-7, andAC-3, for random prob-
lems and some problems from the Radio Link Frequency Problem Suite. The algorithms had to
make a problem arc-consistent or decide that this was impossible.

We have found thatAC-3 always requires more support-checks tiai7 andAC-3,. Only
if problems are easy and underconstrained da@s3 do better than the other two for as far as
time on the wall is concerned.

AC-3; turns out to be remarkably gifted to cheaply detect overconstrained problems (outside
the phase-transition). Except for underconstrained problems, where it requires slightly more
time, it always requires fewer checks and less time th@rm3. AC-7 is only better in time for
dense problems in the phase-transition. For all other probkeds,; performs better in time.

AC-7 only requires fewer checks thaC-3, in the phase-transition region. For the remaining
problemsAC-3, requires fewer checks. We believe that our findings demonstrate@iaf, can
compete withAC-7 both in time on the wall and in the number of support-checks.

Our comparison has been hampered by it being difficult to reproduce results from the litera-
ture. It should be interesting to compare the algorithms as paaf algorithms. It should also
be interesting to compare the algorithms for other classes of random problems. This is something
for a future paper.

19

Chapter 7

Conclusions and Recommendations

In this paper we have presented a general purpose arc-consistency algorithmACaigd/hose
average time-complexity can compete wik3-7 and whoseO (e + nd) space-complexity im-
proves onAC-7's O (ed) space-complexity. We have presented experimental results of a com-
parison betweeAC-7 andAC-3,. The results indicate that for the problems under consideration
AC-3; performs better in time on the wall and in the number of support-checks outside the
phase-transition. In the phase-transitid@-7 always requires fewer checks. Only for dense
problems in the phase-transition region does it require less time.

One reason for the performance A&E-3; is its double-support domain-heuristic call&d
We have compared this heuristic against the lexicographical domain-heutistiuch is the
most commonly used domains-heuristic. Our average time-complexity results have demonstrated
beyond doubt thab is the better heuristic on average.

Our work has been hampered by there being insufficient details in the literature to reproduce
experiments. We hope that future papers will contain sufficient information so as to facilitate easy
reproducibility. We should like to extend our comparison betw&€n3,; and other arc-consis-
tency algorithms.

20

Bibliography

[Bessereet al, 1999 C. Bessere, E.C. Freuder, and J.-Cein. Using inference to reduce arc
consistency computation. In C.S. Mellish, edif®roceedings of the Fourteenth International
Joint Conference on Atrtificial Intelligence (IJCAI'95)olume 1, pages 592-598, Moa#l,
Québec, Canada, 1995. Morgan Kaufmann Publishers, Inc., San Mateo, California, USA.

[Bessereet al, 1999 C. Bessére, E.G. Freuder, and J.-Cein. Using constraint metaknow!-
edge to reduce arc consistency computatitificial Intelligence 107(1):125-148, 1999.

[Flajolet and Sedgewick, 1996°. Flajolet and R. Sedgewick. The average case analysis of al-
gorithms: Mellin transform asymptotics. Technical Report Research Report 2956, INRIA,
1996.

[Gaschnig, 1978 J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problemsPceeding of the Second Biennial Confer-
ence, Canadian Society for the Computational Studies of Intelliggacges 268-277, 1978.

[Gentet al, 1997 |.P. Gent, E. MaclIntyre, P. Prosser, P. Shaw, and T. Walsh. The constrained-
ness of arc consistency. Rroceedings of the Third International Conference on Principles
and Practice of Constraint Programming (CP’199ppages 327-340. Springer, 1997.

[Gomeset al, 1997 Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions
in combinatorial search. In G. Smolka, edit®rinciples and Practice of Constraint Pro-
gramming pages 121-135. Springer Verlag, 1997.

[Mackworth and Freuder, 1985A.K. Mackworth and E.C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satisfaction problefntficial
Intelligence 25(1):65-73, 1985.

[Mackworth, 1977 A.K. Mackworth. Consistency in networks of relationAurtificial Intelli-
gence 8:99-118, 1977.

[Sabin and Freuder, 19pD. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In A.G. Cohn, edit®roceedings of the Eleventh European Confer-
ence on Artificial Intelligence (ECAI'94pages 125-129. John Wiley & Sons, 1994.

21

[van Dongen and Bowen, 2000M.R.C. van Dongen and J.A. Bowen. Improving arc-
consistency algorithms with double-support checks. Ptaceedings of the Eleventh Irish
Conference on Artificial Intelligence and Cognitive Science (AICS’2008)es 140-149,
2000.

[van Dongen, 2001 M.R.C. van Dongen. A theoretical analysis of the average time-complexity
of domain-heuristics for arc-consistency algorithmsPtaceedings of the Tenth International
French Speaking Conference on Logic and Constraint Programming (JFPLC’2p@des
27-41, 2001.

[van Dongen, 2002M.R.C. van Dongen.Constraints, Varieties, and Algorithm#hD thesis,
Department of Computer Science, University College, Cork, Ireland, 2002.

[Wallace and Freuder, 19pR.J. Wallace and E.C. Freuder. Ordering heuristics for arc consis-
tency algorithms. IRAI/GI/VI '92, pages 163—-169, Vancouver, British Columbia, Canada,
1992.

22

