
AC-3d an Efficient Arc-Consistency Algorithm with a
Low Space-Complexity

M.R.C. van Dongen
dongen@cs.ucc.ie

Cork Constraint Computation Centre1

CS Department UCC
Western Road

Cork
Ireland

Technical Report TR-01-2002

June 2002

Available fromhttp:
//csweb.ucc.ie/˜dongen/papers/4C/02/4C-01-2002.pdf

1The Cork Constraint Computation Centre is supported by Science Foundation Ireland

Abstract

Arc-consistency algorithms are widely used to prune the search-space of Constraint Satisfac-
tion Problems (CSPs). They usesupport-checksto find out about the properties ofCSPs. They
usearc-heuristicsto select the constraint anddomain-heuristicsto select the values for their
next support-check. We will demonstrate that domain-heuristics can significantly enhance the
average time-complexity of existing arc-consistency algorithms. We will combine Alan Mack-
worth’s AC-3 and John Gaschnig’sDEE and equip the resulting hybrid with adouble-support
domain-heuristic thereby creating an arc-consistency algorithm calledAC-3d, which has an aver-
age time-complexity which can compete withAC-7 and which improves onAC-7’s space-com-
plexity. AC-3d is easy to implement and requires the same data structures asAC-3. We will
present experimental results to justify our average time-complexity claim.

Chapter 1

Introduction

Arc-consistency algorithms are widely used to prune the search-space of Constraint Satisfac-
tion Problems (CSPs). We will demonstrate thatdomain-heuristicscan significantly enhance
the average time-complexity of existing arc-consistency algorithms. We will integrate Alan
Mackworth’s AC-3 and John Gaschnig’sDEE and equip the resulting hybrid with a so-called
double-supportdomain-heuristic thereby creating a general purpose arc-consistency algorithm
calledAC-3d, which has an average time-complexity which can compete withAC-7—the cur-
rent state-of-the-art in arc-consistency algorithms—and improves onAC-7’s space-complexity.
We will present theoretical and experimental results to justify our average time-complexity claim.

One reason for the increased performance ofAC-3d is that it uses the double-support heuristic
as opposed to the so-calledlexicographicaldomain-heuristic, which is the most commonly used
domain-heuristic for arc-consistency algorithms. To find out about the difference between these
two heuristics we will study two algorithms calledL andD. L uses the lexicographical heuristic
andD uses the double-support heuristic. We will assume that there are only two variables in the
CSP. As a andb become largeL will require about2a + 2b − 2 log2(a) − 0.665492 checks on
average. Herea andb are the domain-sizes andlog2(·) is the base-2 logarithm. If a + b ≥ 14
thenD will require an average number of support-checks which is strictly below2 max(a, b)+2.
We will also provide an “optimality” result which indicates that ifa+ b ≥ 14 then no algorithm
can save two checks or more on average thanD. Our results indicate that as a domain-heuris-
tic the double-support heuristic is to be preferred to the lexicographical heuristic, which is the
most commonly used domain-heuristic for arc-consistency algorithms. Our optimality result is
informative about the possibilities and limitations of domain-heuristics for arc-consistency algo-
rithms.

We will present experimental results from a comparison betweenAC-3d which has aO (e+ nd)
space-complexity andAC-7. As usualn is the number of variables,e is the number of constraints,
andd is the maximum domain size. AC-7 has aO (ed) space-complexity and has proved to
require fewer support-checks than other general purpose arc-consistency algorithms. Our com-
parison involves random problem and problems from the constraint literature. The results of the
comparison demonstrate that, for the problems under consideration,AC-3d can compete with
AC-7 both in time on the wall and in the number of support-checks.

The remainder of this paper is organised as follows. In Chapter 2 we shall provide basic

1

definitions and review constraint satisfaction. The lexicographical and double-support heuristics
will be presented in Chapter 3. In Chapter 4 we shall present our average time-complexity results.
In Chapter 5 we shall presentAC-3d. We shall present our experimental results in Chapter 6. Our
conclusions will be presented in Chapter 7.

2

Chapter 2

Constraint Satisfaction

2.1 Basic Definitions

A Constraint Satisfaction Problem(or CSP) is a tuple(X,D,C), whereX is a set containing
the variables of theCSP, D is a function which maps each of the variables inX to its domain,
andC is a set containing the constraints of theCSP.

Let (X,D,C) be aCSPand letα ∈ X andβ ∈ X \ {α } be two variables. Furthermore, let
D(α) = { 1, . . . , a } 6= ∅ be the domain ofα, and letD(β) = { 1, . . . , b } 6= ∅ be the domain of
β. A (binary) constraintM ∈ C betweenα andβ is ana by b zero-one matrix, i.e. it is a matrix
with a rows andb columns whose entries are either zero or one. A tuple(i, j) in the Cartesian
product of the domains ofα andβ is said tosatisfythe constraintM if Mij = 1. HereMij is
the j-th column of thei-th row ofM . A value i ∈ D(α) is said to besupportedby j ∈ D(β)
if Mij = 1. Similarly, j ∈ D(β) is said to be supported byi ∈ D(α) if Mij = 1. M is called
arc-consistentif for every i ∈ D(α) there is aj ∈ D(β) which supportsi and vice versa. A
CSPis called arc-consistent if the domains of its variables are non-empty and its constraints are
arc-consistent. A variableα is aneighbourof variableβ if there is a binary constraint between
α andβ. Thedegreeof α is denoteddeg(α). It is defined as the number of neighbours ofα.

The densityof a constraint-graph withn > 1 nodes ande edges is sometimes defined as
2e/(n2 − n). For the duration of this paper and for compatibility reasons we shall stick to this
definition. Thetightnessof ana by b constraintM is defined as1− 1

ab

∑a
i=1

∑b
j=1 Mij.

We will denote the set containing alla by b zero-one matrices byMab. We will call matrices,
rows of matrices, and columns of matricesnon-zeroif they contain more than zero ones, and will
call themzerootherwise.

Therow-support(column-support) of a matrix is the set containing the indices of its non-zero
rows (columns). Anarc-consistency algorithmremoves all the unsupported values from the
domains of the variables of aCSPuntil this is no longer possible. Asupport-checkis a test to
find the value of an entry of a matrix. We will writeM ?

ij for the support-check to find the value
of Mij. An arc-consistency algorithm has to carry out the support-checkM ?

ij to find out about
the value ofMij. The time-complexity of arc-consistency algorithms is expressed in the number
of support-checks they require to find the supports of their arguments.

3

Let A be an arc-consistency algorithm and letM be ana by b matrix. We will write
checksA (M) for the number of support-checks required byA to compute the row and col-
umn-support ofM .

The total number of support-checksof A overMab is the functiontotalA : N × N 7→ Q

defined astotalA(a, b) =
∑

M∈Mab checksA (M). Theaverage time-complexityofA overMab is
the functionavgA : N× N 7→ Q defined asavgA(a, b) = totalA(a, b)/2ab.

A support-checkM ?
ij is said tosucceedif Mij = 1 and said tofail otherwise. If a sup-

port-check succeeds it is calledsuccessfulandunsuccessfulotherwise. Note that it follows from
our definition of average time-complexity that it is just as likely for a support-check to succeed
as it is for it to fail.

M ?
ij is called asingle-support checkif, just before the check was carried out, the row-sup-

port status ofi was known and the column-support status ofj was unknown, or vice versa. A
successful single-support checkM ?

ij leads to new knowledge about one thing. Either it leads to
the knowledge thati is in the row-support ofM where this was not known before the check was
carried out, or it leads to the knowledge thatj is in the column-support ofM where this was not
known before the check was carried out.M ?

ij is called adouble-support checkif, just before the
check was carried out, both the row-support status of ofi and the column-support status ofj were
unknown. A successful double-support checkM ?

ij leads to new knowledge abouttwo things. It
leads to the knowledge thati is in the row-support ofM and thatj is in the column-support of
M where neither of these facts were known to be true just before the check was carried out. A
domain-heuristic is called adouble-support heuristicif it prefers double-support checks to other
checks.

On average it is just as likely that a random double-support check will succeed as it is that
a random single-support check will succeed—in both cases one out of two checks will succeed
on average. However, the potential payoff of a double-support check is twice as large that of
a single-support check. This is an indication that at domain-level arc-consistency algorithms
should prefer double-support checks to single-support checks.

Another indication that arc-consistency algorithms should prefer double-support checks is
that in order to minimise the total number of support-checks it is a necessary condition to max-
imise the number of successful double-support checks[van Dongen, 2002].

2.2 Related Literature

In 1977 Mackworth presented an arc-consistency algorithm calledAC-3 [Mackworth, 1977].
Together with Freuder he presented a lower bound ofΩ (ed2) and an upper bound ofO (ed3) for
its worst-case time-complexity[Mackworth and Freuder, 1985]. The algorithm, as mentioned
before, has aO (e+ nd) space-complexity.

AC-3, as presented by Mackworth, is not an algorithm as such; it is aclassof algorithms
which have certain data-structures in common and treat them similarly. The most prominent
data-structure used byAC-3 is a queuewhich initially contains each of the pairs(α, β) and
(β, α) for which there exists a constraint betweenα andβ. The basic machinery ofAC-3 is

4

such thatany tuple can be removed from the queue. For a “real” implementation this means
that heuristics determine the choice of the tuple that is going to be removed from the queue. By
selecting a member from the queue, these heuristics determine the constraint that will be used
for the next support-checks. Such heuristics will be calledarc-heuristics.

Not only are there arc-heuristics forAC-3, but also are there heuristics which, given a con-
straint, select the values in the domains of the variables that will be used for the next sup-
port-check. Such heuristics we will calldomain-heuristics.

Experimental results from Wallace and Freuder clearly indicate that arc-heuristics influence
the average performance of arc-consistency algorithms[Wallace and Freuder, 1992]. Gentet al
have made similar observations[Gentet al., 1997].

Bessìere, Freuder and Ŕegin present another class of arc-consistency algorithms calledAC-7
[Bessìereet al., 1995; Bessìereet al., 1999]. AC-7 is an instance of theAC-INFERENCEschema.
AC-7 saves support-checks by making inference. Inference is made at domain-level, where it
is exploited thatMij = MT

ji . Here·T denotes transposition. AC-7 has an optimal upper bound
of O (ed2) for its worst-case time-complexity and has been reported to behave well on average.
AC-7’s space-complexity isO (ed).

In their papers, Bessière, Freuder and Ŕegin present experimental results that theAC-7 ap-
proach is superior to theAC-3 approach if the number of support-checks is concerned. If the
time on the wall is concerned, they observe thatAC-3 is a good alternative if checks are cheap
[Bessìereet al., 1999]. They present results of applications ofMAC-3 andMAC-7 to real-world
problems. HereMAC-i is a backtracking algorithm which usesAC-i to maintain arc-consistency
during search[Sabin and Freuder, 1994].

Van Dongen and Bowen present results from an experimental comparison betweenAC-7 and
AC-3b, which is a cross-breed between Mackworth’sAC-3 and Gaschnig’sDEE [van Dongen
and Bowen, 2000; Mackworth, 1977; Gaschnig, 1978]. Their comparison only considered sup-
port-checks. In their settingAC-3b was equipped with a lexicographical arc-heuristic. At the
domain-levelAC-3b uses a double-support heuristic. In their setting,AC-7 was equipped with
a lexicographical arc-heuristic and domain-heuristic. AC-3b has the same worst-case time-com-
plexity asAC-3. In van Dongen and Bowen’s setting it turned out thatAC-3b was more ef-
ficient thanAC-7 for the majority of their30, 420 random problems. AlsoAC-3b was more
efficient on average. These are surprising results becauseAC-3b, unlike AC-7, has to repeat
support-checks because it cannot remember them. They are also interesting becauseAC-3b has
a better space-complexity thanAC-7 (O (e+ nd) versusO (ed)). These results were the first
indication that domain-heuristics can improve arc-consistency algorithms.

5

Chapter 3

Two Arc-Consistency Algorithms

In this section we shall introduce the two arc-consistency algorithmsL andD. The two algo-
rithms only differ in their domain-heuristic.L uses alexicographical heuristicandD uses a
double-support heuristic. We shall first presentL and then presentD.

From here on we shall sometimes useL (D) instead of using lexicographical domain-heuris-
tic (double-support domain-heuristic) and vice versa. This is justified because the algorithm
completely determines the heuristic and vice versa.

3.1 The Lexicographical Algorithm L
L does not repeat support-checks. It first tries to establish its row-support. It does this for each
row in the lexicographical order on the rows. When it seeks support for rowr it tries to find the
lexicographically smallest column which supportsr. After L has computed its row-support, it
tries to find support for those columns whose support-status is not yet known. It does this in the
lexicographical order on the columns. WhenL tries to find support for a columnc, it tries to find
it with the lexicographically smallest row that was not yet known to supportc.

Pseudo-code forL is depicted in Figure 3.1.L computes its support by removing the unsup-
ported rows and columns from the domains of the variables using two proceduresremove row
andremove col. Without loss of generality we have assumed that the size of the constraints is
determined by the domains.
L is, in essence, Gaschnig’s version of Mackworth’srevise algorithm which is part of the

AC-3 machinery[Gaschnig, 1978; Mackworth, 1977]. L only establishes row-support whereas
revise establishes both row-support and column-support.
L has been presented so as to highlight its essence. Using standard techniques the algorithm

can be transformed to use counters instead of the two-dimensional arraychecked. With the use
of this technique the algorithm will have aO (a+ b), that is, aO (d) space-complexity[Bessìere
et al., 1995]. It is a straightforward exercise to prove correctness ofL.

6

constantUNSUPPORTED = −1;

procedureL(a by b constraintM) = begin
/* Initialisation. */
for each rowr do begin

rsupp[r] := UNSUPPORTED;
for each columnc do

checked[r][c] := UNSUPPORTED;
end;
for each columnc do

csupp[c] := UNSUPPORTED;

/* Find row-support. */
for each rowr do begin
c := 1;
while (c ≤ b) and(rsupp[r] = UNSUPPORTED) do begin

if (M?
rc = 1) then begin

rsupp[r] := c;
csupp[c] := r;

end;
c := c+ 1;

end;
if (rsupp[r] = UNSUPPORTED) then

remove row(r);
end;

/* Complete column-support. */
for each columnc do begin
r := 1;
while (r ≤ a) and(csupp[c] = UNSUPPORTED) do begin

if (not checked[r][c]) then
if (M?

rc = 1) then
csupp[c] := r;

r := r + 1;
end;
if (csupp[c] = UNSUPPORTED) then

remove col(c);
end;

end;

Figure 3.1: AlgorithmL

7

constantUNSUPPORTED = −1;
constantSINGLE = −2;
constantDOUBLE = −3;

procedureD(a by b constraintM) = begin
/* Initialisation. */
for each rowr do begin

rkind[r] := UNSUPPORTED;
rsupp[r] := UNSUPPORTED;

end;
for each columnc do

csupp[c] := UNSUPPORTED;

/* Find row-support. */
for each rowr do begin
c := 1;
/* First try to find support forr using double-support checks. */
while (c ≤ b) and(rsupp[r] = UNSUPPORTED) do begin

if (csupp[c] = UNSUPPORTED) then begin
/* M?

rc is a double-support check. */
if (M?

rc = 1) then begin
rkind[r] := DOUBLE;
rsupp[r] := c;
csupp[c] := r;

end
c := c+ 1;

end;
c := 1;
/* If r is still unsupported then try to find support using single-support checks. */
while (c ≤ b) and(rsupp[r] = UNSUPPORTED) do begin

if (csupp[c] 6= UNSUPPORTED) then begin
/* M?

rc is a single-support check. */
if (M?

rc = 1) then begin
rkind[r] := SINGLE;
rsupp[r] := c;

end;
end;
c := c+ 1;

end;
if (rsupp[r] = UNSUPPORTED) then

remove row(r);
end;

/* Complete column-support. */
for each columnc do begin
r := 1;
while (r ≤ a) and(csupp[c] = UNSUPPORTED) do begin

if (rsupp[r] < c) and(rkind[r] = DOUBLE) then
if (M?

rc = 1) then begin
csupp[c] := r;
rsupp[r] := c;

end;
r := r + 1;

end
if (csupp[c] = UNSUPPORTED) then

remove col(c);
end;

end;

Figure 3.2: AlgorithmD

8

3.2 The Double-Support AlgorithmD
In this section we shall introduce the second arc-consistency algorithm calledD. D uses a
double-support heuristic as its domain-heuristic. The heuristic has underlying lexicographical
heuristics to break ties.
D’s strategy is a bit more complicated than that ofL. Like L it does not repeat sup-

port-checks. The algorithm will first find its row-support in the lexicographical order on its
rows. When it tries to find support for rowr it will first use double-support checks. It does this
by finding the lexicographically smallest columnc whose support-status is not yet known. When
there are no more double-support checks left thenD will use single-support checks to find sup-
port for rowr. Finally,D will use single-support checks for the columns for which no support
had been established.

We have depicted pseudo-code forD in Figure 3.2.D is implemented in aO (a+ b), that is
aO (d), space-complexity.

It easy to prove thatD does compute its row-support correctly. To prove that it also computes
its column-support correctly is not much more difficult. Immediately afterD has established its
row-support, for every rowr each of the following holds:

1. rkind[r] 6= DOUBLE andrsupp[r] = UNSUPPORTED if and only if for every column
c the checkM ?

rc has been carried out and failed;

2. rkind[r] 6= DOUBLE andrsupp[r] 6= UNSUPPORTED if and only if r’s support was
established with a single-support check. Note that for every unsupported columnc the
checkM ?

rc has already been carried out whileD tried to establish support forr using
double-support checks;

3. rkind[r] = DOUBLE if and only if r’s support was established with a double-support
check. Note that for every unsupported columnc ≤ rsupp[r] the checkM ?

rc has already
been carried out and that for every unsupported columnc > rsupp[r] the checkM ?

rc has
not been carried out.

Together, Point 1 and 2 imply that ifrkind[r] 6= DOUBLE then for each unsupported column
c the checkM ?

rc has already been carried out. To complete its column supportD therefore
only considers rowsr for which rkind[r] = DOUBLE and unsupported columnsc for which
rsupp[r] < c. The remainder of the proof is easy because Point 3 is maintained as an invariant
whileD completes the computation of its unsupported columns.

It is important to point out that the first two for-each statements in theD algorithm can be
avoided. The statements in the first for-each statement can be integrated with the third for-each
statement by putting them at the start of that third for-each statement statement. The statements
can be put just before ore just after the assignmentc := 1. The second for-each statement can
be avoided by representing a valuec in the domains of a variable by a tuple(c, csupp[c]). The
second members of the tuples should be initialised toUNSUPPORTED before the first call to
D. A good time to do this is when the domains are initialised. Furthermore, the second members
of the tuples should be set it toUNSUPPORTED at the end of the last for-each statement. A

9

good way to do this is by adding an extra else-clause for the last if-statement (it corresponds to
the case wherecsupp[c] 6= UNSUPPORTED). This will ensure that each second member of
the tuples isUNSUPPORTED at the start of every call toD. The last transformation does not
affect the space-complexity.

10

Chapter 4

Average Time-Complexity Results

In this section we shall present average time-complexity results forL andD. The proofs are long
and tedious and due to space limitations they have been omitted. The reader is referred to[van
Dongen, 2002] for proof and further information.

The remainder of this section is as follows. We shall first present anexact formula and
a good approximation foravgL(a, b). Next we shall present anexactformula and a tight upper
bound foravgD(a, b). Finally, we shall present an “optimality” result foravgD(a, b) and compare
avgL(a, b) andavgD(a, b).

Theorem 4.1 (Average Time Complexity ofL) Let a and b be positive integers. The average
time-complexityavgL(a, b) ofL overMab is given by

avgL(a, b) = a(2− 21−b) + (1− b)21−a + 2
b∑
c=2

(1− 2−c)a.

Following [Flajolet and Sedgewick, 1996, Page 59] we obtain the following accurate estimate:

avgL(a, b) ≈ ãvgL(a, b) = 2a+ 2b− 2 log2(a)− 0.665492.

Here,log2(·) is the base-2 logarithm. This estimate is already good for relatively smalla andb.
For example, fora = b = 10 we have| avgL(a, b)− ãvgL(a, b)|/ avgL(a, b) < 0.5%.

Theorem 4.2 (Average Time Complexity ofD) Let a andb be non-negative integers. The av-
erage time-complexityavgD(a, b) of D overMab is given byavgD(a, b) if a = 0 or b = 0, and
by

avgD(a, b) = 2 + (b− 2)21−a + (a− 2)21−b + 22−a−b − (a− 1)21−2b

+ 2−b avgD(a− 1, b) + (1− 2−b) avgD(a− 1, b− 1)

if a 6= 0 andb 6= 0.

11

Let a and b be positive integers such thata + b ≥ 14. The following upper bound for
avgD(a, b) is presented in[van Dongen, 2001; 2002]:

avgD(a, b) < 2 max(a, b) + 2

− (2 max(a, b) + min(a, b))2−min(a,b)

− (2 min(a, b) + 3 max(a, b))2−max(a,b).

It is a relatively easy exercise to prove that a value that requires support from a domain of
sized requires2−d

∑d
i=1 i2

d−i = 2 − 21−d ≈ 2 checks on average[van Dongen, 2002]. As
a consequenceany arc-consistency algorithm will require at least about2 max(a, b) checks on
average. We can use this and the upper bound foravgD(a, b) to derive the important result
thatD is “almost optimal,” because if14 ≤ a + b, thenavgD(a, b) − avgA(a, b) < 2 for any
arc-consistency algorithmA.

It is not difficult to see that theminimumnumber of support-checks required byL is a +
b − 1. This implies that ifa + b ≥ 14 and if a and b are approximately the same then the
minimumnumber of support-checks required byL is almost the same as theaveragenumber of
support-checks required byD!
D is a better algorithm thanL because its upper bound is lower than the bound that we

derived forL. Whena andb get large and are of the same magnitude then the difference is about
a+ b− 2 log2((a+ b)/2) which is quite substantial.

At this point it may be interesting to state that for each algorithmA ∈ {L,D } we have
verified the formula foravgA(a, b) for 1 ≤ a, b ≤ 6. We did this by applyingA to each of the
matrices inMab and by computing the total numberTA of support-checks which were required.
We have verified thatTA was exactly2ab avgA(a, b). This is comforting becauseavgA(a, b) is
defined as

∑
M∈Mab checksA (M) /2ab and if our analysis is correct then this ought to be exactly

TA/2
ab.

12

Chapter 5

The AC-3d Algorithm

In this section we shall briefly describeAC-3d and sketch a correctness proof. We assume famil-
iarity of the reader withAC-3.

Q := set containing all arcs in the constraint graph;

while (Q 6= ∅) do begin
select and remove any arc(α, β) fromQ;
if (β, α) is also inQ then begin

remove(β, α) fromQ;
useD to simultaneously reviseD(α) andD(β) using the constraint betweenα andβ;
if (D(α) = ∅) then

returnwipeout;
else begin

if D(α) has changed then
for each neighbourγ 6= β of α doQ := Q ∪ { (γ, α) };

if D(β) has changed then
for each neighbourγ 6= α of β doQ := Q ∪ { (γ, β) };

end
end
else begin

use Mackworth’srevise to reviseD(α) using the constraint betweenα andβ;
if (D(α) = ∅) then

returnwipeout;
else ifD(α) has changed then

for each neighbourγ 6= α of β doQ := Q ∪ { (γ, β) };
end

end;

Figure 5.1: Algorithm AC-3d

We have depictedAC-3d in Figure 5.1. The machinery ofAC-3d is inspired by Mackworth’s
AC-3 and Gashnig’sDEE [Mackworth, 1977; Gaschnig, 1978]. AC-3d uses a queue of arcs
just like AC-3. If AC-3d’s arc-heuristics select the arc(α, β) from the queue and if the reverse
arc (β, α) is not in the queue thenAC-3d proceeds likeAC-3 by revising the domainD(α)
of α using the constraintM betweenα andβ. Here, to revise a domain using constraintM ,
means to remove the unsupported values from that domain using the constraintM . AC-3d uses
Mackworth’srevise to reviseD(α) with M . If the domainD(α) of α has changed due to the

13

revision then for each neighbourγ 6= β of α the arc(γ, α) is added to the queue if it was
not in the queue. The difference betweenAC-3 and AC-3d becomes apparent whenAC-3d’s
arc-heuristic selects the arc(α, β) from the queue and when the reverse arc(β, α) is also in
the queue. If this is this case thenAC-3d also removes(β, α) from the queue and usesD to
simultaneously revise the domains ofα andβ. Arcs are added to the queue in a similar way as
described before.

In the implementation ofAC-3d it is required to find out if the domain of a variable has
changed as a result of a revision. Mackworth’srevise already allows for this. ForD this is not,
yet, possible. However, if we add two additional arguments toD, one for each of the domains,
which are set toFALSE byD if no change occurred to the domain they belong to and toTRUE
otherwise then we can cheaply find out about changes to these domains. The additional overhead
toD does not change its time-complexity.

AC-3d inherits itsO (ed3) worst-case time-complexity andO (e+ nd) space-complexity
from AC-3b and from the fact thatD has aO (d) space-complexity.

14

Chapter 6

Experimental Results

In this section we present some results from a comparison ofAC-3d againstAC-3 andAC-7. The
organisation of this section is as follows. In Section 6.1 we observe that there is a problem in
the literature which concerns the reproducability of experiments which involveMAC solvers. In
Section 6.2 we shall describe the experiment. In Section 6.3 we shall present and discuss our
results A summary will be presented in Section 6.4.

6.1 Reproducability

One of the most important applications of arc-consistency isMAC search. Therefore, arc-con-
sistency algorithmsA1 andA2 are frequently compared by: embeddingAi into MAC-algorithm
Mi, for i ∈ { 1, 2 }, and to use the results of the comparison betweenM1 andM2 to compare
A1 andA2. To compare the ratio between the support-checks that were required byA1 andA2

one simply divides the checks that were required byM1 by the checks that were required by
M2. To compare time on the wall one uses a similar approach.

This does not always result in a fair comparison. For example,M1 andM2 may use a
different variable ordering heuristic during search. Even with commonly used heuristics there
may still be differences. For example, a standard minimum domain size ordering heuristic which
uses a maximum degree ordering as a tie-breaker does not rule out the possibility of ties and the
choice of the next variable can make the difference between finding an easy solution or getting
lost in the search space. ForRLFPA#11, for example, fora minimum domain size variable
ordering heuristic ourMAC-3 solver required 1,453 seconds, 1,191,650,012 support-checks, and
1,928,872 backtracks to find the first solution on a 1000 MHzDELL Latitude,1 whereas Bessière,
Freuder and Ŕegin report a solution time of 36.31 seconds for theirMAC-3 solver on a 200 MHz
PC [Bessìereet al., 1999]. It is obvious that the difference between the two is not a representative
of the difference between the underlying arc-consistency components.

Gomes, Selman, and Crato study the effects of some commonly used variable ordering
heuristics on the variability in time to find the first solution in backtrack search.[Gomeset
al., 1997]. They observe that anomalies do occur and present remedies to overcome them.

1Our MAC-3d solver required 990 seconds, 582,777,218 support-checks, and 1,928,872 backtracks.

15

Exact information about variable ordering heuristics forMAC search is very scarce in the lit-
erature. This is a serious problem. We hope that future papers will contain sufficient information
about these heuristics so as to facilitate easy reproducibility.

6.2 The Experiment

We do not have our own implementation ofAC-7. It is for this reason and for reasons as laid out
in Section 6.1 that we decided not to useMAC searchers to compare their underlying arc-con-
sistency components. To compareAC-3d againstAC-7 we have taken results from Bessière,
Freuder and Ŕegin as published in[Bessìereet al., 1999] and compared them against our own
results. Our own algorithms were run on a 1000 MhzDELL Latitude. To compare our times
against Bessière, Freuder and Ŕegin’s times, we divided their times by 5 because their experi-
ments were carried out on a 200 MHzPentiumPC [Bessìereet al., 1999].

The problem set consists of random problems and Radio Link Frequency Assignment Prob-
lems (RLFAPs). The objective for eachCSP is that it be made arc-consistent or to decide that
this is not possible.

The randomCSPs consist of four groups, each of which is uniquely determined by a tuple
〈n, d, p1, p2 〉. Here,n is the number of variables,d is the (uniform) size of the domains,p1 is the
density of the constraint-graph, andp2 is the (uniform) tightness of the constraints. Each group
contains 50 randomCSPs. The four groups that we will consider are given by:

〈 150, 50, 0.045, 0.500 〉 Under-constrainedCSPs. To make these problems arc-consistent re-
quires little constraint propagation;

〈 150, 50, 0.045, 0.940 〉 Over-constrainedCSPs. To decide that these problems cannot be made
arc-consistent requires little constraint propagation;

〈 150, 50, 0.045, 0.918 〉 Low density CSPs at the phase-transition. To make these problems
arc-consistent or to decide this is not possible requires much constraint propagation;

〈 50, 50, 1.000, 0.875 〉 High densityCSPs at the phase-transition. To make these problems
arc-consistent or to decide this is not possible requires much constraint propagation.

TheRLFAPProblems were obtained fromftp://ftp.cs.unh.edu/pub/csp/archive/
code/benchmarks . To generate the random problems, we used Frost, Dechter, Bessière
and Ŕegin’s random constraint generator, which is available fromhttp://www.lirmm.fr/
˜bessiere/generator.html . For reproducability purposes, it should be mentioned that
the generator was run with seed 0.

The algorithms that were compared areAC-7 (calledAC-7 BFR from here on) as presented
in [Bessìereet al., 1999], AC-3 (calledAC-3 BFR from here on) as presented in[Bessìereet al.,
1999], our implementation ofAC-3, and our implementation ofAC-3d. The arc-heuristic that was
used forAC-3 andAC-3d prefers arc(α, β) to (α′, β′) if sα < sα′ or if sα = sα′ ∧ dα < dα′ or
sα = sα′ ∧dα = dα′ ∧sβ < sβ′ or sα = sα′ ∧dα = dα′ ∧sβ = sβ′ ∧dβ ≤ dβ′, whereSx = |D(x)|

16

and dx = deg(x). This very expensive heuristic is better forAC-3d than a lexicographical
heuristic with which it almost “degenerates” toAC-3.

It is interesting to mention that a lexicographical arc-heuristic forAC-3d does not work as
well as the more expensive heuristic mentioned before. Always preferring the lexicographically
smallest arc(α, β) makes it less likely that(β, α) is also in the queue and this causesAC-3d to
“degenerate” toAC-3.

6.3 Results

Here we shall present and discuss the results for the random and theRLFAP problems.

〈 150, 50, 0.045, 0.500 〉 〈 150, 50, 0.045, 0.940 〉
underconstrained overconstrained

checks time checks time
AC-3 BFR 100,010 0.016 514,973 0.074
AC-7 BFR 94,030 0.038 205,070 0.058
AC-3 99,959 0.022 135,966 0.013
AC-3d 50,862 0.019 69,742 0.007

〈 150, 50, 0.045, 0.918 〉 〈 50, 50, 1.000, 0.875 〉
phase-transition/sparse phase-transition/dense

checks time checks time
AC-3 BFR AC 2,353,669 0.338 2,932,326 0.382

IC 4,865,777 0.734 8,574,903 1.092
AC-7 BFR AC 481,878 0.154 820,814 0.247

IC 535,095 0.184 912,795 0.320
AC-3 AC 2,254,058 0.162 4,025,746 0.302

IC 2,602,318 0.196 6,407,079 0.491
AC-3d AC 1,734,362 0.140 2,592,579 0.245

IC 2,010,055 0.171 4,287,835 0.394

Table 6.1: Average Results for Random Problems

The results for the random problems are presented in Table 6.1. The columns “checks” and
“time” list the average time and average number of support-checks. For the problems on the
phase-transition we have separated the results for problems that could be made arc-consistent
and problems which could not be made arc-consistent. The former group is marked by the letters
“ AC” in the second column and the latter group is marked by the letters “IC” in the second
column. We shall first discuss the random problems and then the remaining problems.

For the underconstrained problemsAC-3 BFR requires (slightly) more checks thanAC-3.
That both algorithms require almost the same number of checks is probably caused by the fact
that these problems are “almost” arc-consistent so that most arcs have to be checked only once.
AC-3 BFRrequires less time. This may be caused because it has an arc-heuristic which requires

17

less overhead thanAC-3’s. It is difficult to explain the differences betweenAC-3 BFRandAC-3.
Sometimes the former algorithm is better and sometimes the other.

AC-3d always requires fewer checks thanAC-3 BFRand thanAC-3. AC-3d always requires
less time thanAC-3. Only for the underconstrained problems doesAC-3 BFR require less time.
For the remaining classesAC-3d is always better in time. This is consistent with the literature
because algorithms which try to be clever by making more inference thanAC-3 (BFR) waste
time. AC-3 is not better in time thanAC-3d. This is caused because its arc-heuristic is the same
as that ofAC-3d and because this heuristic requires overhead. The difference between theAC-3
andAC-3d is mainly caused byAC-3d having a better domain-heuristic. It is interesting to notice
thatAC-3d seems to be a lot better thanAC-3 BFR andAC-3 for the overconstrained problems.
ApparentlyAC-3d is a lot better at detecting such problems.

AC-3d is better in time and checks thanAC-7 BFR for the underconstrained and overcon-
strained problems. It is interesting thatAC-3d is also much better thanAC-7 BFR for the over-
constrained problems. For the problems at the phase-transitionAC-7 BFR becomes better than
AC-3d in the number of checks. This should not come as a surprise becauseAC-7 BFR does
not repeat checks whereasAC-3d has to repeat them. The difference in checks is quite signifi-
cant. AC-3d performs better in time in the sparse area in the phase-transition region. It performs
marginally better in time in the dense area if problems can be made arc-consistent. For the sparse
problems in the phase-transition which cannot be made arc-consistent the ratio between the time
required byAC-3d and that required byAC-7 BFR is approximately 1.23 which is significant.

We believe it is fair to say that overallAC-3d can compete withAC-7 BFR both in time on
the wall and checks. Outside the phase-transitionAC-3d performs better thanAC-7 BFR both
in time and checks. In the phase-transitionAC-3d requires more checks thanAC-7 BFR. Only
for the sparse problems in the phase-transition shouldAC-3d be preferred toAC-7 BFR if one
wishes to save time. AC-7 should be preferred for dense problems in the phase-transition.

AC-3 BFR AC-7 BFR AC-3 AC-3d
checks time checks time checks time checks time

RLFAP#3 615,371 0.050 412,594 0.138 615,371 0.124 267,532 0.092
RLFAP#5 1,735,239 0.126 848,438 0.232 833,282 0.252 250,797 0.136
RLFAP#8 2,473,269 0.168 654,086 0.168 1,170,748 0.420 25,930 0.040
RLFAP#11 971,893 0.072 638,932 0.212 971,893 0.268 406,247 0.186

Table 6.2: Average Results for RLFAP Problems

The results for theRLFAP Problems are presented in Table 6.2. For theRLFAP problems
AC-3 BFR performs better thanAC-3d for Problems 3, 5, and 11. This is consistent with our
findings for the random problems because these problems are relatively easy. Problems 3 and 11,
for example, are already arc-consistent. AC-3d does significantly better thanAC-3 BFR for RL-
FAP#8both in time and checks. This is also consistent with our findings for the overconstrained
problems becauseRLFAP#8cannot be made arc-inconsistent and is relatively easy.

AC-3d performs better in time and checks thanAC-7 BFRfor all problems. Again, the results
for RLFAP#8are consistent with our findings for the overconstrained problems. The results for

18

the other problems are also consistent with the results we found for the random problems because
theRLFAP Problems are not in the phase-transition region and are relatively easy.

6.4 Summary

We have presented results from a comparison betweenAC-3, AC-7, andAC-3d for random prob-
lems and some problems from the Radio Link Frequency Problem Suite. The algorithms had to
make a problem arc-consistent or decide that this was impossible.

We have found thatAC-3 always requires more support-checks thanAC-7 andAC-3d. Only
if problems are easy and underconstrained doesAC-3 do better than the other two for as far as
time on the wall is concerned.

AC-3d turns out to be remarkably gifted to cheaply detect overconstrained problems (outside
the phase-transition). Except for underconstrained problems, where it requires slightly more
time, it always requires fewer checks and less time thanAC-3. AC-7 is only better in time for
dense problems in the phase-transition. For all other problemsAC-3d performs better in time.
AC-7 only requires fewer checks thanAC-3d in the phase-transition region. For the remaining
problemsAC-3d requires fewer checks. We believe that our findings demonstrate thatAC-3d can
compete withAC-7 both in time on the wall and in the number of support-checks.

Our comparison has been hampered by it being difficult to reproduce results from the litera-
ture. It should be interesting to compare the algorithms as part ofMAC algorithms. It should also
be interesting to compare the algorithms for other classes of random problems. This is something
for a future paper.

19

Chapter 7

Conclusions and Recommendations

In this paper we have presented a general purpose arc-consistency algorithm calledAC-3d whose
average time-complexity can compete withAC-7 and whoseO (e+ nd) space-complexity im-
proves onAC-7’s O (ed) space-complexity. We have presented experimental results of a com-
parison betweenAC-7 andAC-3d. The results indicate that for the problems under consideration
AC-3d performs better in time on the wall and in the number of support-checks outside the
phase-transition. In the phase-transitionAC-7 always requires fewer checks. Only for dense
problems in the phase-transition region does it require less time.

One reason for the performance ofAC-3d is its double-support domain-heuristic calledD.
We have compared this heuristic against the lexicographical domain-heuristicL which is the
most commonly used domains-heuristic. Our average time-complexity results have demonstrated
beyond doubt thatD is the better heuristic on average.

Our work has been hampered by there being insufficient details in the literature to reproduce
experiments. We hope that future papers will contain sufficient information so as to facilitate easy
reproducibility. We should like to extend our comparison betweenAC-3d and other arc-consis-
tency algorithms.

20

Bibliography

[Bessìereet al., 1995] C. Bessìere, E.C. Freuder, and J.-C. Régin. Using inference to reduce arc
consistency computation. In C.S. Mellish, editor,Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI’95), volume 1, pages 592–598, Montréal,
Québec, Canada, 1995. Morgan Kaufmann Publishers, Inc., San Mateo, California, USA.

[Bessìereet al., 1999] C. Bessìere, E.G. Freuder, and J.-C. Régin. Using constraint metaknowl-
edge to reduce arc consistency computation.Artificial Intelligence, 107(1):125–148, 1999.

[Flajolet and Sedgewick, 1996] P. Flajolet and R. Sedgewick. The average case analysis of al-
gorithms: Mellin transform asymptotics. Technical Report Research Report 2956, INRIA,
1996.

[Gaschnig, 1978] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problems. InProceeding of the Second Biennial Confer-
ence, Canadian Society for the Computational Studies of Intelligence, pages 268–277, 1978.

[Gentet al., 1997] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The constrained-
ness of arc consistency. InProceedings of the Third International Conference on Principles
and Practice of Constraint Programming (CP’1997), pages 327–340. Springer, 1997.

[Gomeset al., 1997] Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions
in combinatorial search. In G. Smolka, editor,Principles and Practice of Constraint Pro-
gramming, pages 121–135. Springer Verlag, 1997.

[Mackworth and Freuder, 1985] A.K. Mackworth and E.C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satisfaction problems.Artificial
Intelligence, 25(1):65–73, 1985.

[Mackworth, 1977] A.K. Mackworth. Consistency in networks of relations.Artificial Intelli-
gence, 8:99–118, 1977.

[Sabin and Freuder, 1994] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In A.G. Cohn, editor,Proceedings of the Eleventh European Confer-
ence on Artificial Intelligence (ECAI’94), pages 125–129. John Wiley & Sons, 1994.

21

[van Dongen and Bowen, 2000] M.R.C. van Dongen and J.A. Bowen. Improving arc-
consistency algorithms with double-support checks. InProceedings of the Eleventh Irish
Conference on Artificial Intelligence and Cognitive Science (AICS’2000), pages 140–149,
2000.

[van Dongen, 2001] M.R.C. van Dongen. A theoretical analysis of the average time-complexity
of domain-heuristics for arc-consistency algorithms. InProceedings of the Tenth International
French Speaking Conference on Logic and Constraint Programming (JFPLC’2001), pages
27–41, 2001.

[van Dongen, 2002] M.R.C. van Dongen.Constraints, Varieties, and Algorithms. PhD thesis,
Department of Computer Science, University College, Cork, Ireland, 2002.

[Wallace and Freuder, 1992] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consis-
tency algorithms. InAI/GI/VI ’92, pages 163–169, Vancouver, British Columbia, Canada,
1992.

22

