
Constraints, Varieties, and Algorithms

M.R.C. van Dongen
Department of Computer Science

National University of Ireland, Cork
Western Road, Cork

Ireland

June, 2002

Declaration

This dissertation is submitted to University College Cork, in accordance with the requirements
for the degree of Doctor of Philosophy in the Faculty of Science. The research and thesis pre-
sented in this dissertation are entirely my own work and have not been submitted to any other
university or higher education institution, or for any other academic award in this university.
Where use has been made of other people’s work, it has been fully acknowledged and refer-
enced.

M.R.C. van Dongen
June 2002.

i

Acknowledgements

Working on this thesis was fun but without the help of some people this work would not have
been possible. I should like to thank Pat Fitzpatrick for his final and Jim Bowen for his initial
supervision. I have greatly benefited from their comments and input. Also, I should like to thank
Jim for getting me to Ireland and for allowing me to spend a lot of time on trying out new ideas.
Without him I would not have had the opportunity to start this work.

Special thanks should also go to my External Supervisors Peter Jeavons and Dave Cohen for
providing excellent comments about the thesis and for making the “viva” an enjoyable event.

Thanks to Pádraic, Neil, and Ruth for keeping up the morale and for interesting discussions.
Finally, I should like to thank Olly for his friendship and hospitality, especially in the two months
before finalising this thesis.

ii

Contents

1 Introduction 1
1.1 Scope of this Thesis .1
1.2 Outline of this Thesis .2

2 Constraints 4
2.1 Introduction to Constraints .4

2.1.1 Introduction .4
2.1.2 Constraint Satisfaction Problems .4
2.1.3 Constraint Logic Programming .5
2.1.4 Constraints in Mathematics .6
2.1.5 Outline .6

2.2 Constraint Satisfaction and Search .6
2.2.1 A Historical Background .6
2.2.2 Constraints .8
2.2.3 Chronological Backtrack Search .11
2.2.4 Consistency .12
2.2.5 Consistency Maintenance During Search14
2.2.6 Summary .15

2.3 Constraint Logic Programming .16
2.3.1 Introduction .16
2.3.2 CLP with Linear Inequalities over the Reals16
2.3.3 CLP over the Reals .17
2.3.4 Other CLP Dialects .18
2.3.5 Summary .19

2.4 Related Work in Mathematics .19
2.4.1 Introduction .19
2.4.2 The First-Order Theory of the Reals .19
2.4.3 Applications of FOTR .21
2.4.4 Summary .21

2.5 Summary .22

iii

CONTENTS iv

3 Varieties, Ideals and Gröbner Bases 23
3.1 Introduction .23
3.2 Ideals and Varieties .24

3.2.1 Introduction .24
3.2.2 Ideals .24
3.2.3 Varieties .25
3.2.4 Vanishing Ideals .28
3.2.5 Elimination Ideals .29
3.2.6 Radical Ideals .31
3.2.7 Ideal-Variety Correspondence .33

3.3 Gröbner Bases .38
3.3.1 Introduction .38
3.3.2 Term Orders .38
3.3.3 Definition of Gröbner Bases .39

3.4 Gröbner Basis Algorithms .40
3.4.1 Introduction .40
3.4.2 Ideal Membership .40
3.4.3 Consistency of Ideals .41
3.4.4 Elimination Ideals .41
3.4.5 Ideal Intersection .41
3.4.6 Zero-Dimensional Ideals .42
3.4.7 Extension of Solutions .44

4 CSPs in Solved Form 46
4.1 Introduction .46
4.2 Basic Definitions .46
4.3 Related Mathematics .48

4.3.1 Triangular Form Theorem .48
4.3.2 Counting Theorem .49
4.3.3 Extension Theorem .49

4.4 Ideals, Varieties, and Constraints .49
4.5 An Algorithm for CSPs in Directionally Solved Form52
4.6 Example Applications .55
4.7 Concluding Remarks .59

5 The Geometry of Constraints 61
5.1 Introduction .61
5.2 Covers and Partitions of Constraints .62
5.3 Linear Constraints .64
5.4 Linear Partitions .71
5.5 Experimental Results .77

5.5.1 Implementation Issues .77
5.5.2 Some Results .77

CONTENTS v

5.5.3 Future Work .81
5.6 Summary .81

6 The AC-3b Arc-Consistency Algorithm 83
6.1 Introduction .83
6.2 Constraint Satisfaction Theory .84

6.2.1 Constraint Satisfaction .84
6.2.2 Arc-Consistency .84

6.3 Related Work .85
6.4 Double-Support Checks .85
6.5 The AC-3b Algorithm .87
6.6 Experimental Results .90

6.6.1 Description of the Experiment .90
6.6.2 Discussion of Results .90

6.7 Conclusions and Recommendations .93

7 Average Time-Complexity for Domain-Heuristics 95
7.1 Introduction .95
7.2 Constraint Satisfaction .96

7.2.1 Basic Definitions .96
7.2.2 Related Literature .98
7.2.3 The General Problem .100

7.3 Two Arc-Consistency Algorithms .101
7.3.1 The Lexicographical AlgorithmL .101
7.3.2 The Double-Support AlgorithmD .104
7.3.3 A First Comparison ofL andD .106

7.4 Average Time-Complexity ofL .108
7.5 Average Time-Complexity ofD .113
7.6 Comparison ofL andD .117

7.6.1 A Theoretical Comparison ofL andD117
7.6.2 A Comparison for Some Special Cases118

7.7 Conclusions and Recommendations .120

8 Conclusions and Recommendations 121
8.1 Introduction .121
8.2 Gröbner Bases .121

8.2.1 Conclusion .121
8.2.2 Recommendations .122

8.3 Arc-Consistency .122
8.3.1 Conclusion .122
8.3.2 Recommendations .123

8.4 Generalised Backtracking .123
8.4.1 Conclusion .123

CONTENTS vi

8.4.2 Recommendations .124

Bibliography 125

List of Symbols 133

List of Acronyms 135

Index 136

List of Figures

2.1 Micro-structure of CSP. .10
2.2 Micro-structure of a three-variable CSP. .11
2.3 Chronological backtrack search tree. .12

3.1 Intersection of circle and parabola. .27

4.1 Macro-structure of original CSP. .56
4.2 Macro-structure of CSP in solved form. .57

5.1 Degree function. .66
5.2 Micro-structure before amalgamation. .68
5.3 Micro-structure after amalgamation. .68
5.4 Micro-structure before collapsingx andy. 70
5.5 Micro-structure after collapsingx andy. 70
5.6 Partition function .72
5.7 Linear partition. .74
5.8 In-order search tree for variable orderingx ≺ y. 75
5.9 In-order search tree for variable orderingy ≺ x. 75
5.10 Generalised search tree for partition{ π1, π2 }. 75
5.11 Branching factors for RLFA problem #3. .79
5.12 Ratio of branching factors for RLFA problem #3.79
5.13 Branching factors for RLFA problem #4. .80
5.14 Ratio of branching factors for RLFA problem #4.80

6.1 Micro-structure of 2-variable CSP. .86
6.2 The AC-3b algorithm. .88
6.3 Thepartition algorithm. .89
6.4 #cc(AC-3). .91
6.5 #cc(DEE). .91
6.6 #cc(AC-7). .91
6.7 #cc(AC-3b). .91
6.8 #cc(AC-3)−#cc(DEE). .91
6.9 #cc(AC-3)−#cc(AC-3b). .91
6.10 #cc(DEE)−#cc(AC-3b). .92

vii

LIST OF FIGURES viii

6.11 #cc(AC-7)−#cc(AC-3b). .92
6.12 1− #cc(AC-3b)

#cc(DEE)
. .93

6.13 1− #cc(AC-3b)
#cc(AC-7)

. .93

7.1 The lexicographical algorithmL. .102
7.2 Traces ofL. .103
7.3 The double-support algorithmD. .107
7.4 Traces ofD. .108
7.5 avgL(n, n) andavgD(n, n) for n ∈ { 1, . . . , 20 }.119
7.6 upbD(n, n)− avgD(n, n) for n ∈ { 1, . . . , 20 }.119

List of Tables

5.1 Problem overview. .78

6.1 Average number of support-checks. .92

7.1 Comparison ofavgL(n, n) andavgD(n, n) for n ∈ { 1, . . . , 20 }.118

ix

Chapter 1

Introduction

1.1 Scope of this Thesis

The idea to program withconstraintsfor special purposes has been around since the 1960-s.
This has resulted in the notion of aconstraint satisfaction problem(CSP). CSPs can be used to
specify, represent, and solve many problems occurring in academia and the “real world.”

Gröbner Basis Theoryoriginates from the 1960-s from Bruno Buchberger’s PhD disserta-
tion.1 Gröbner Basis Theory provides algorithms which generalise the Gaussian Elimination
Algorithm and the Euclidean Algorithm in the sense that the Gröbner Basis Algorithms remain
valid if polynomials “become” multivariate and non-linear.

In this thesis we are concerned with algorithms to solve problems occurring in the areas of
Constraint Satisfaction and Gröbner Basis Theory. We borrow ideas from Geometry and Ideal
Theory in general and from Gröbner Basis Theory in particular. As part of our presentation we
shall point out relationships between notions in Geometry and Gröbner Basis Theory on the one
hand and notions in Constraint Satisfaction Theory on the other.

The main contributions of this thesis are as follows:

• Varieties in Geometry are solutions of systems of simultaneous polynomial equations. We
shall point out an important relationship between constraints and varieties: Finite con-
straints are in essence varieties. This relationship opens the door for the application of
algorithms from Gröbner Basis Theory to problems occurring in Constraint Satisfaction.
It also allows for the integration of discrete and continuous constraints.

• We shall present an elegant algorithm to computeCSPs in directionally solved form with
respect to a variable ordering and to computeCSPs which are in globally solved form with
respect to all variable orderings. The algorithm relies heavily on the relationship between
constraints and varieties, the relationship between varieties andvanishingideals and, the
relationship between elimination ideals and Gröbner bases with respect to lexicographical
term orders.

1This is not completely true. The theory was established in the 1960-s, whereas the name Gröbner Basis was
only adopted by Buchberger in the 1970-s as a tribute to his PhD supervisor Wolfgang Gröbner.

1

CHAPTER 1. INTRODUCTION 2

• We shall present a novel arc-consistency algorithm for binaryCSPs which uses a simple
double-support heuristicwhich can improve any existing arc-consistency algorithm. The
key insight is that in order to minimise the total number of consistency-checks it is nec-
essary to maximise the number of consistency-checks which find (new) support for two
values at a time. Atdomain-level(i.e. after the selection of a constraint that will be used
for the next consistency-check) our heuristic selects a consistency-check which, if suc-
cessful, will increase the number of supported values by as much as possible. We present
experimental results which suggest that the heuristic is, indeed, efficient.

Until recently, it was not known that heuristics which operate at domain-level can have
influence on the performance of arc-consistency algorithms which do not repeat consis-
tency-checks. These results are the first results which demonstrate that heuristics which
operate at domain-level can have a significant influence on the performance of arc-consis-
tency algorithms.

• We shall study the average time-complexity of two arc-consistency algorithms which only
differ in their domain-heuristicsfor the case where there are only two variables in the
CSP. To the best of our knowledge these are the first average time-complexity results for
arc-consistency algorithms to appear in the constraint literature. The heuristics under in-
vestigation are the double-support heuristic and the lexicographical heuristic. The lexi-
cographical heuristic is used for the implementation of most arc-consistency algorithms.
Not only do our results clearly indicate that the double-support heuristic is superior to
the lexicographical heuristic but also indicate that it is efficient in the sense that, should
heuristics exist which are better, then the use of these heuristics can only lead to “marginal”
improvements.

Our average time-complexity results are numbers which can be used to compare the per-
formance of two algorithms. Besides these numbers, we shall also provide good reasons
to explainwhythe double-support heuristic is better.

Finally, we shall provide reasons which justify our choice to study the average time-com-
plexity of domain-heuristics for two-variableCSPs.

• We shall present a generalisation of the well known chronological backtracking algorithm.
Our algorithm is a generalisation in the sense that it can useanykind of constraint (as op-
posed to just unary constraints—the domains of the variables) to decompose a problem into
smaller problems. Our choice will never increase the local branching factor of the search
tree but can make it smaller. We present experimental results of the application of this
algorithm to some large problems known from the literature. The results will demonstrate
that the generalised backtracking algorithm is promising.

1.2 Outline of this Thesis

The outline of the remainder of this thesis is as follows. In Chapter 2, we shall lay out the main
concepts and results of Constraint Satisfaction Theory. Chapter 3 will provide an introduction to

CHAPTER 1. INTRODUCTION 3

Gröbner Basis Theory. In Chapter 4 we shall present our algorithm to computeCSPs in direc-
tionally and globally solved form. In Chapter 5 we shall discuss the “geometry” of constraints
and shall present our generalised backtracking algorithm. In Chapter 6 we shall present the
double-support heuristic and experimental results which indicate that the heuristic can greatly
improve existing arc-consistency algorithms. The average time-complexity results will be pre-
sented in Chapter 7. In Chapter 8 we shall present our conclusion and a discussion for future
research.

Chapter 2

Constraints

2.1 Introduction to Constraints

2.1.1 Introduction

Constraints are ubiquitous in mathematics, in computer science, and in the “real world.” They
provide a convenient framework for the description, representation and solution of many prob-
lems. In this chapter we shall study constraints.

Before providing a detailed description of constraints and their different disguises, we shall
provide a global background to the constraint paradigm. This will be done in the following
sections. They provide a rough taxonomy for the different usages of constraints. In Section 2.1.2
we shall provide a brief introduction toconstraint satisfaction problems. In Section 2.1.3 we
shall describe the main characteristics ofconstraint logic programming. The use ofconstraints
in mathematicswill be covered in Section 2.1.4. A more detailed presentation, one for each of
the different usages of constraints, can be found in Section 2.2, Section 2.3, and Section 2.4.

2.1.2 Constraint Satisfaction Problems

In this section we shall provide a short introduction toconstraint satisfaction problems. As
promised in the introduction we shall also study constraint satisfaction problems in greater detail.
This will be done in Section 2.2 where we shall also study search.

Constraint satisfaction problems are used to specify, represent, and solve many interesting
problems involving variables, the domains from which the variables can take their values, and
finally, relations between subsets of the variables. The introduction of the constraint paradigm
has resulted in an enormous diversity of approaches to the solution of a cornucopia of problems.

For the moment it suffices to know that the main characteristics of (finite) constraint satisfac-
tion problems are given by the following list:

• A finite Constraint Satisfaction Problem (CSP) constitutes a set of variables, the domains
of the variables, and constraints between subsets of the variables.

• The domains of the variables are finite and are known in advance.

4

CHAPTER 2. CONSTRAINTS 5

• A constraintbetween a subsetS of the variables of theCSP is a subset of the Cartesian
product of the domains of the variables inS. The membership problem of each of the
constraints is decidable as well as tractable. The intuition is that constraints correspond
to relations between subsets of the variables thereby limiting the “assignments” to the
variables that are “allowed.” It can be decided if an assignment is allowed by carrying out
constraint membership tests.

Constraint satisfaction theory will be studied in more detail in Section 2.2.
A constraint programming languageis a programming language which has aconstraint com-

ponentand aprogramming component. Theconstraint component(more commonly referred to
as theconstraint-store) is used to represent the variables, their domains and the constraints. In
addition it provides algorithms to implement strategies to be used before, during, or after search.
Theprogramming componentprovides a language to define constraint satisfaction problems and,
if the language implements this, annotations to select algorithms to implement certain strategies
during certain stages in the process of solving a problem or transforming it to anequivalent
problem. Here, a problem is equivalent to another problem if their solutions are the same.

In the following we shall distinguish between different kinds of constraint programming lan-
guages. Constraint programming languages which only deal with constraint satisfaction pro-
grams will be calledconstraint satisfaction programming languages.

2.1.3 Constraint Logic Programming

Constraint Logic Programming(CLP) languages are logic programming languages enriched with
constraints. This section provides a short introduction to constraint logic programming. A more
detailed description will be provided in Section 2.3.

Most of the differences between constraint satisfaction problems and constraint logic pro-
gramming originate from constraint logic programming’s roots in logic programming. For exam-
ple, in constraint logic programming—as opposed to constraint satisfaction programming—the
domains of the variables are not always explicitly available. Instead, user-defined predicates can
also indirectly determine the set of values from which the variables can take their values.

Constraints in constraint logic programming are used both as input for and output of queries.
For example, the query

1 <= X, X <= 1

when posed in the constraint logic programming languageCLP(R-Lin), will lead to the answer
X = 1. This mayseemto be a solution of the inequalities butis an output constraint, namely
the constraint which only allowsX to be1. Because the answer given byCLP(R-Lin) is not No
it is understood that the original query is satisfiable and that the returned answer is its equivalent.

Constraint logic programming languages are, in essence, logic programming languages where
unification has been replaced by constraint satisfaction, i.e. the unification algorithm used in logic
programming has been replaced by an algorithm to decide constraint satisfaction.

CHAPTER 2. CONSTRAINTS 6

2.1.4 Constraints in Mathematics

Another usage of constraints arises in mathematics where certain classes of problems include
variables which have to satisfy certain kinds of equations, inequalities or inequations.1 The
problems are formulae that are universally and/or existentially quantified and contain disjunctive
and conjunctive operators and equations, inequations and inequalities. These kinds of constraints
have been studied by mathematicians for centuries and many kinds of solution techniques have
been developed to deal with them.

2.1.5 Outline

In the remainder of this chapter we shall review in greater detail constraint satisfaction, search,
constraint logic programming, and the use of constraints in mathematics. Due to the nature of the
remainder of this thesis, the emphasis will be on constraint satisfaction and search. Constraint
satisfaction problems and search will be discussed in Section 2.2. We shall discuss the constraint
logic programming paradigm in Section 2.3. We shall not refer to constraint logic programming
in subsequent chapters. Section 2.3 has been included solely for the purposes of comparison and
completeness. In Section 2.4 we shall study selected branches in mathematics which deal with
constraints. We shall present a summary in Section 2.5.

In the following it will be assumed that the reader is familiar with the notions of logic pro-
gramming and (chronological) backtracking. Readers not familiar with logic programming may
wish to consult[Nilsson and Maluszynski, 1989; Apt, 1997; Bratko, 1986] or any other book
on logic programming orPROLOG. Readers not familiar with backtracking may wish to consult
[Kondrak and van Beek, 1995; 1997; Nadel, 1989; Dechter and Frost, 1999] or [Ginsberg, 1993;
Tsang, 1993].

2.2 Constraint Satisfaction and Search

2.2.1 A Historical Background

The purpose of Section 2.2 is to provide a constraint satisfaction vocabulary and an understanding
of how the use ofconsistency algorithmscan improve backtrack search. In this section we shall
provide an introduction to constraint satisfaction and search from a historical perspective. At the
end of this section we shall outline the organisation of the remainder of Section 2.2.

Backtrack Search and Thrashing

There are several methods to find solutions of problems involving constraints and variables the
domains of which are finite and are known in advance. The most commonly used method is
chronological backtrack search[Golomb and Baumert, 1965]. Backtrack search belongs to the

1Here and in the remainder of this thesis, equalities are formulae of the formp = q, strict inequalities are
formulae of the formp < q or p > q, inequalities are formulae of the formp ≤ q or p ≥ q, and inequations are
formulae of the formp 6= q.

CHAPTER 2. CONSTRAINTS 7

generate-and-testfamily of solution methods.2 To solve problems, members of this family use
a strategy to start with an empty partial solution and to recursively generate, i.e. extend, partial
solutions and to carry out tests to see which of these (partial) candidate solutions satisfy the
relevant constraints. The (partial) solutions which violate one or more constraint are omitted
because they cannot contribute to the solution set.

Chronological backtrack search suffers from a short-term memory—total amnesia, really—
and due to the nature of the generate-and-test approach it repeatedly has to rediscover that certain
combinations of values are not compatible. This is what is calledthrashing[Mackworth, 1977].
Due to the size of the search-space, thrashing almost always results in the enumeration of an
enormous number of candidate solutions which will never be part of a solution, thus resulting in
very longe execution times.

Consistency

The cause of thrashing is that a problem which is formulated as aconstraint satisfaction problem
usually has a relatively low level ofconsistency. Roughly speaking, one problem formulation is
less consistent than another if it leaves more room for partial solutions which do not violate any
of the constraints between subsets of the variables, but which will nevertheless not participate
in any global solution. A formal definition of the notion of consistency will be provided in
Section 2.2.4.

Consistency Algorithms as Preprocessors

Researchers who used chronological backtracking soon discovered that making constraint sat-
isfaction problems more consistent is possible at relatively low cost and generally significantly
improves the performance of backtrack search. After this discovery many researchers started
to useconsistency algorithmsas preprocessors to backtracking, i.e. they transformed constraint
satisfaction problems into equivalent constraint satisfaction problems which were guaranteed to
have a certain level of consistency (usually higher than the original level of consistency) and then
they applied backtracking[Mackworth, 1977; Gaschnig, 1978; Mackworth and Freuder, 1985;
1993; Mohr and Henderson, 1986; Dechter and Dechter, 1987].

Unfortunately, to make problems more consistentbeforesearch does not always prevent
thrashing. Incompatible combinations of values still have to be rediscovered several times during
search, albeit at a later stage.

Consistency Maintenance During Search

Early methods to try to overcome the problem that thrashing still occurs after the application
of consistency algorithms (before search)maintainedcertain levels ofdirectional consistency
during search, i.e. they maintained consistency levels during search which depend on the “di-
rection” of search (the ordering on the variables). An early reference is[Haralick and El-
liott, 1980] which considers directional consistency methods for the first time. The term di-

2Perhaps extend-and-test would have been a better name.

CHAPTER 2. CONSTRAINTS 8

rectional consistency is due to Dechter[Dechter, 1990a] (see also[Dechter and Pearl, 1988a;
1988b]). Dechter’s application of directional consistency methods is tocutset decomposition,
where one tries to “transform” the original constraint satisfaction problem into a constraint satis-
faction problem that does not contain “circular dependencies”[Dechter and Meiri, 1989]. These
problems can be shown to be solved without much effort[Freuder, 1982].

Note that it is possible—at least in principle—to make a problem completely consistent be-
fore the application of search. In general, this is not the preferred approach because the combined
costs of making the problem entirely consistent and search will normally outweigh the total costs
of search without applying consistency algorithms. Furthermore, to make a problem completely
consistent usually involves the introduction of additional constraints, the majority of which in-
volve many variables and are therefore usually very large.

At the moment this thesis was written it was a trend to maintain certain low levels of consis-
tency during search which were independent of the direction of search[Sabin and Freuder, 1994;
Bessièreet al., 1995; Sabin and Freuder, 1997].

Organisation

The organisation of the remainder of Section 2.2 is as follows. In Section 2.2.2 we shall provide
definitions ofconstraints, andconstraint satisfaction problems. In Section 2.2.3 we shall discuss
chronological backtrack search and some of the problems that arise with this algorithm. We shall
study the concepts ofsatisfiabilityandconsistencyin Section 2.2.4. In Section 2.2.5 we shall
provide evidence that to maintain a certain level of consistency during search can be worthwhile.
In Section 2.2.6 we shall provide a summary.

The reader who is interested in a more detailed introduction to constraints may wish to con-
sult [Dechter, 1992; Tsang, 1993; Marriot and Stuckey, 1998; Früwirth and Abdonnaher, 1997;
Smith, 1995].

2.2.2 Constraints

This section is an introduction toconstraints, constraint satisfaction problems, the notion of
satisfiability, and other notions that will allow us to reason about (properties of) constraint satis-
faction problems.

Constraints

In the following, letn be a positive integer, letX = {x1, . . . , xn } be a set of variables, and
let · <lex · be the “usual” lexicographical ordering on the variables inX. It is assumed that
xi <lex xj, if and only if i < j, for 1 ≤ i, j ≤ n. Associated with each variable is itsdomain.
The domain ofxi is denotedD(xi).

Definition 2.1 (Constraint). Let S = {xi1 , . . . , xim } be a non-empty set of variables. A setCS
is called aconstraintbetween the variables ofS if

CS ⊆×m

j=1D(xij),

CHAPTER 2. CONSTRAINTS 9

where·×· denotes the Cartesian product operator.

Definition 2.2 (Arity). Thearity of a constraintCS is given by the cardinality ofS. A constraint
whose arity ism is called anm-ary constraint.

A constraint is calledunary if its arity is one,binary if its arity is two, andternary if its arity
is three. A constraint the arity of which is higher than two is usually referred to as ahigher order
constraint.

A constraintCS contains those and only those tuples that represent the “assignments” to
the variables inS that are allowed by the constraint. The notion of a tuple being allowed by a
constraint will be formalised in the following paragraphs with the introduction of the notion of
constraint satisfaction.

Constraint Satisfaction

In the following, tuples will play the role of “assignments” to variables. LetS = {xi1 , . . . , xim }
be a non-empty set of variables. AnS-tuple (or(xi1 , . . . , xim)-tuple) is understood to be an
“assignment” to(xi1 , . . . , xim). An S-tuple (vi1 , . . . , vim) is the simultaneous “assignment”
xi1 = vi1 , . . . ,xim = vim. It will be implicitly assumed that if(vi1 , . . . , vim) is anS-tuple then
the indicesi1, . . . , im comply with the ordering· <lex · on the variablesxi1 , . . . ,xim. If xi is a
variable then{xi }-tuples will also be referred to asxi-tuples.

Definition 2.3 (Constraint Satisfaction). Let S andT be non-empty sets of variables, and let
CS be a constraint between the variables inS. A T -tuple t is said tosatisfyCS if eitherS 6⊆ T
or S ⊆ T and the projection oft ontoS is a member ofCS.

Definition 2.4 (Consistency-Check).Let CS be a constraint and lets be anS-tuple. A test of
the forms ∈ CS is called aconsistency-check.

Consistency-checks are decidable. Usually, consistency-checks are understood to be tractable.
Standard measures for the complexity of constraint satisfaction problems are the average and the
worst number of consistency-checks needed to solve that problem. In the remainder of this the-
sis, we shall—for reasons which will become apparent—sometimes usesupport-checkinstead
of consistency-check.

Constraint Satisfaction Problems

Definition 2.5 (Constraint Satisfaction Problem).A Constraint Satisfaction Problem(CSP) is
a triple of the form(X,D,C), whereX is a set of variables,D is a function that maps each
variable inX to its domain, andC is a set containing constraints on subsets of the variables in
X.

Note that without loss of generality we may assume that if(X,D,C) is a CSP thenX =
∪CS∈CS because we can always add the unary constraintC{x } = D(x) for everyx ∈ X for
which there is no unary constraint. From now on we shall assume that every constraint satisfac-
tion problem(X,D,C) is such thatX = ∪CS∈CS.

CHAPTER 2. CONSTRAINTS 10

In the following, aCSPwill be calledfinite if the cardinalities of the domains of the variables
of theCSPare finite.

Associated with everyCSPis its constraint graph. Constraint graphs are hyper-graphs. For
every variable of theCSPthere is a vertex in the graph and vice versa. For every constraintCS
of theCSPthere is an edgeES in the constraint graph between the vertices corresponding to the
variables inS and vice versa.

The maximum domain size of the variables of aCSP is usually denotedd in the constraint
literature. The number of edges in the constraint graph of aCSP is usually denotede. A CSP
whose constraints all have an arity of two or less is called abinary CSP.

Definition 2.6 (Satisfiability of CSP). Let (X,D,C) be aCSP, and letZ be a set of variables
such thatX ⊆ Z. A Z-tuple is said tosatisfytheCSPif it satisfies each of the constraints inC.

A CSPis calledsatisfiableif there is a tuple which satisfies theCSPandunsatisfiableother-
wise.

The micro-structureof a binaryCSP is a detailed way of depicting aCSP[Freuder, 1993].
Figure 2.1 depicts the micro-structure of the constraint satisfaction problem(X,D,C), where
X = {x, y }, D(x) = { 0, 1 }, D(y) = { 0, 1 }, C =

{
C{x }, C{ y }, C{x,y }

}
, C{x } = { 0, 1 },

C{ y } = { 0 } andC{x,y } = { (0, 0), (0, 1), (1, 0) }. The domains of the variables are rep-

0 1x

0 1y

Figure 2.1: Micro-structure of CSP.

resented by the dashed oval-shaped structures. The values in the domains of the variables are
represented by the circles in the domains. The binary constraints are represented by the edges
between a value in the domain of one variable and a value in the domain of another variable. The
unary constraints are represented by the remaining edges. AnS-tuple is in a constraint if and
only if its values are connected by an edge between the variables inS.

From now on unary constraints will be omitted from micro-structures ofCSPs. It will be
implicitly assumed that each value in the domain of each variable satisfies the unary constraint
on that variable.

Definition 2.7 (Solution). Let C = (X,D,C) be aCSP. An X-tuple that satisfiesC is called a
solutionof C.

Definition 2.8 (Equivalence ofCSPs). Two CSPs (X,D1, C1) and (X,D2, C2) are called
equivalentif and only if their solutions are the same.

CHAPTER 2. CONSTRAINTS 11

2.2.3 Chronological Backtrack Search

In this section we briefly recall some properties of the chronological backtrack search algorithm
to solveCSPs and discuss some of the problems which occur with this algorithm.

Backtracking Algorithms

Constraint satisfaction problems whose variables all have domains of finite cardinality are fre-
quently solved using the chronological backtracking algorithm. Variants of this algorithm range
from:

• a plain version[Golomb and Baumert, 1965] with a predefined variable and value ordering;
to

• forward checking[Haralick and Elliott, 1980] andMAC [Sabin and Freuder, 1994] which
try to prevent errors by maintaining certain levels of local consistency; and to

• backjumping[Gaschnig, 1978], conflict directed backjumping[Prosser, 1993] and dy-
namic backtracking[Ginsberg and McAllester, 1994] which try to prevent local mistakes
by locating “the” cause of previous errors.

For surveys of backtracking the reader may wish to consult[Kondrak and van Beek, 1995; 1997;
Nadel, 1989; Dechter and Frost, 1999]. Basic properties of backtracking can be found in[Gins-
berg, 1993; Tsang, 1993].

An algorithm to solve problemP is called asoundalgorithm to solveP if, whenever it returns
S, thenS is a solution ofP. An algorithm to solve problemP is called acompletealgorithm to
solveP if it returns all solutions ofP. Backtracking is sound and complete.

Search Trees

0 1x

0 1y

0 1 2z

Figure 2.2: Micro-structure of a three-variable CSP.

Consider the constraint satisfaction problem(X,D,C), whereX = {x, y, z }, D(x) =
D(y) = { 0, 1 }, D(z) = { 0, 1, 2 }, C{x,y } = { (0, 0), (0, 1), (1, 0), (1, 1) } andC{ y,z } =
{ (0, 0) }. The micro-structure of theCSPis depicted in Figure 2.2.

CHAPTER 2. CONSTRAINTS 12

A chronological backtracker which uses the (standard) lexicographical ordering heuristics
on the variables and the values in their domains to solve theCSP, will visit the nodes in the
search-tree depicted in Figure 2.3 using an in-order traversal. The subscripts to the right of the
nodes indicate the visiting order of the nodes.

The shortest paths from the root to the leaves of the tree that are printed in bold face corre-
spond to the solutions of theCSP. The backtracker starts off by makingx the current variable
and by setting its value to0. It will then try to find which combinations ofy andz are compatible
with the current choice forx. It will need six consistency-checks to do this—one check for each
of the six members in the Cartesian product of the domains ofy andz.

x = 01

y = 02

z = 03 z = 14 z = 25

y = 16

z = 07 z = 18 z = 29

x = 110

y = 011

z = 012 z = 113 z = 214

y = 115

z = 016 z = 117 z = 218

Figure 2.3: Chronological backtrack search tree.

To complete the search the backtracker will assign1 to x and will try to find out which
combinations fory andz are compatible with this new assignment tox. The consistency-checks
it requires to find these compatible assignments are(1, v) ∈ C{x,y } and(v, w) ∈ C{ y,z }, for
0 ≤ v ≤ 1, and0 ≤ w ≤ 2. The consistency-checks of the form(v, w) ∈ C{ y,z } are exactly the
same as the ones that were needed to find the values that were compatible with the assignment
x = 0. In total it will need twelve consistency-checks onC{ y,z } alone.

Chronological backtracking cannot remember any consistency-check it has carried out be-
fore. This is one of its greatest deficiencies.

Note that each of the consistency-checks that failed is a consequence of the fact that some of
the members of the domain ofy andz do not participate in any of the solutions. That some of
these members are not part of any solution can be discovered by examining the constraintC{ y,z }.
The removal of these values,1 fromC{ y }, and1 and2 fromC{ z }, beforethe search had started
would have prevented all consistency-checks that failed.

An important lesson can be learned from this example because problems like the one dis-
cussed here can be part of larger problems and may have to be solved over and over again. To
remove values from the domains of the variables which cannot contribute to solutions of such
sub-problems will not change the solutions of the whole problem but will improve the search
because each time the sub-problem has to be solved, the values do not have to be taken into
account.

2.2.4 Consistency

In this section we shall study the notion ofconsistencyin constraint satisfaction, certain proper-
ties ofCSPs that have a certain level of consistency, and the use of consistency as a preprocessor
of CSPs to improve search.

CHAPTER 2. CONSTRAINTS 13

One of the innovating contributions of constraint satisfaction to artificial intelligence is the
notion of consistency. Early studies on consistency focussed on special cases of consistency
[Montanari, 1974] (see also[Montanari and Rossi, 1988]). A standard reference for special cases
of consistency is also[Mackworth, 1977]. The special cases of consistency referred to before
can all be captured as instances of the more general notion ofk-consistency ofCSPs [Freuder,
1978]. The following paragraphs provide a definition ofk-consistency.

Before we can definek-consistency we need the notion ofk-satisfiability.

Definition 2.9 (k-Satisfiability). Let (X,D,C) be aCSPand letk be a positive integer. A
T -tuple is said tok-satisfytheCSPif it satisfies each of the constraintsCS ∈ C for whichS ⊆ T
and for which|S| ≤ k.

A CSP is calledk-satisfiable if for every subsetT of X whose cardinality isk there is a
T -tuple whichk-satisfies theCSP.

Definition 2.10 (k-Consistency).LetX be a set containingn > 0 variables, let(X,D,C) be
a CSP, and let2 ≤ k ≤ n be an integer. TheCSP is 1-consistentif for every x ∈ X it holds
thatD(x) = C{x } 6= ∅. TheCSPis k-consistentif for everyS-tuple of the form(vi1 , . . . , vik−1

)
which(k−1)-satisfies theCSPit holds that for everyT ∈ {S ∪ {x } : x ∈ X \ S } there is aT -
tuple(wj1 , . . . , wjk) whichk-satisfies theCSPand has the property thatip = jq =⇒ vip = wjq ,
for 1 ≤ p < k and1 ≤ q ≤ k.

From an intuitive point of view, aCSPis k-consistent if for everyS-tuple of cardinalityk−1
which (k − 1)-satisfies theCSPit is possible, for each of the remaining variablesx ∈ X \ S, to
find anx-tuple such that the result of extending theS-tuple by thex-tuple is an({x } ∪ S)-tuple
whichk-satisfies theCSP.

Note that this operation of extendingS-tuples is exactly what happens all the time during
backtrack-search when values are assigned to the current variable and consistency-checks are
carried out to decide whether these assignments satisfy the constraints between the current and
past variables. CSPs with higher levels of consistency are easier to search in the sense that they
usually allow for fewer errors to be made during backtrack search.

Definition 2.11 (Strong k-Consistency).Let k be a positive integer. ACSP is strongly k-
consistentif it is j-consistent for all1 ≤ j ≤ k.

It is important to note that aCSP involving n variables which is stronglyn-consistent is
satisfiable.

The following theorem relates the level ofstrongk-consistency of binaryCSPs and the max-
imum domain size of the variables. The reader is referred to[Dechter, 1990b] for proof and
further details.

Theorem 2.12 (From Local to Global Consistency).Let C = (X,D,C) be aCSPsuch that
the maximum arity of the constraints inC is r, and max({ |D(x)| : x ∈ X }) = k. If C is
strongly(k(r − 1) + 1)-consistent, then it is globally consistent. In particular, ifC is binary and
strongly(k + 1)-consistent then it is globally consistent.

CHAPTER 2. CONSTRAINTS 14

Binary CSPs that are 1-consistent are callednode-consistent. Binary CSPs that are 2-consis-
tent are calledarc-consistent. The reasons for this are historical.

The time-complexity of transforming a binaryCSP into its arc-consistent equivalent as a
function of the maximum domain sized and the number of binary constraintse is O (ed2).
This result is due to[Mohr and Henderson, 1986] who presented an optimal arc-consistency
algorithm calledAC-4. Note that it is straightforward to see that it should not be necessary to
spend more thaned2 consistency-checks because there cannot be more thaned2 such checks and
each check can be remembered at the cost of aO (ed2) space-complexity. However, the number
ed2 can become quite large and it is a challenge to find algorithms with a lower space complexity
thanO (ed2). Another algorithm to transform aCSP into its arc-consistent equivalent isAC-3
[Mackworth, 1977]. The worst-case time-complexity ofAC-3 is O (ed3). It was observed in
[Wallace, 1993] thatAC-3 almost always performed better thanAC-4 despite the fact thatAC-3
has a worse worst-case time-complexity.

Another optimal arc-consistency algorithm calledAC-7 is presented in[Bessièreet al., 1995]
(See also[Bessièreet al., 1999]). This algorithm performs much better thanAC-3 andAC-4 on
average.

A binary CSPis calledconnectedif its constraint graph is connected. A graph that is a finite
collection of trees is called aforest. Binary CSPs that are arc-consistent and whose constraint
graphs are forests can be solved (in the sense of returning a solution if it exists) without back-
tracking[Freuder, 1982]. These results of[Freuder, 1982] were generalised in[Freuder, 1985].

As already indicated, the use of consistency algorithms to transformCSPs into equiva-
lent problems that are more consistent usually improves search. It takes at mostnd consis-
tency-checks to remove from the domains of the variables those values that do not satisfy the
unary constraints on those variables. The costs of this are much less than the costs of backtrack-
ing whereas the removal of a few values from the domains of one or more variables significantly
reduces the size of the search-space, which is of the same order as

∏
x∈X |D(x)|.

Similarly, making aCSParc-consistent is a good investment because the overhead required
to make theCSParc-consistent is low in comparison with the costs of search. The removal of
even a few values from the domains of one or more variables reduces the number of occasions
where local mistakes can be made during search thus reducing the number of candidate solutions
that have to be considered. Practical evidence in the form of experiments where node-consis-
tency and arc-consistency algorithms were appliedbeforesearch have supported the claim that
the combined costs of consistency and search are less than the costs of searching without the
application of these consistency algorithms.

2.2.5 Consistency Maintenance During Search

In this section we shall study the relationship between the maintenance of low levels of consis-
tency during search and the complexity of the subsequent search.

CHAPTER 2. CONSTRAINTS 15

Propagate and Generate

Up to around the 1990s it was commonly agreed upon by the constraint satisfaction community
that the application of consistency-algorithms was to makeCSPs node-consistent (1-consistent)
and arc-consistent (2-consistent)beforesearch and that search was to be carried out alone while
maintaining a level of consistency which was stronger than node-consistency but not as strong as
arc-consistency[Sabin and Freuder, 1994]. See[Nadel, 1987; 1989] for a study of selected back-
tracking algorithms and a classification of such algorithms according to thedegreeof arc-consis-
tency they maintained. In Nadel’s terminology these degrees were numbers which were strictly
between0 and1.

The agreement by the constraint satisfaction community was questioned and evidence was
provided that the Maintenance offull Arc-Consistency (MAC) during search was more efficient
on average than searching while maintaining lower levels of consistency[Sabin and Freuder,
1994]. This was supported by[Bessièreet al., 1995] where results were presented of the appli-
cation of aMAC-algorithm to problems. With the exception of the Zebra Problem the problems
that were solved were beyond the scope of methods which only maintained consistency levels of
less than two.

Backtracking algorithms which maintain consistency levels of two and more during search
are sometimes referred to aspropagate-and-generate(as opposed to generate-and-test) because
these algorithms use constraint propagation to obtain a certain level of consistency and then
generate the next part of the solution.

Justification of MAC

The reason why the maintenance of arc-consistency during search works is similar to the reason
why it is good to make problems arc-consistent before search. It is because an “assignment” to
the current variable in backtrack search can be viewed as the removal of values from a unary
constraint. This is a process by which values in the domains of other variables may directly
or indirectly lose support, i.e. it is a process by which problems may lose a certain degree of
consistency. The loss of consistency normally leads to more local mistakes during search. A few
assignments can lead to large inconsistencies. If the level of consistency is low it is relatively
easy to maintain that level of consistency during search compared to the costs of search alone.
Experimental results have reconfirmed this several times.

2.2.6 Summary

Constraint satisfaction problems are a good vehicle to specify, represent, and solve certain classes
of problems. A frequently used algorithm to solve constraint satisfaction problems is backtrack-
ing. One of the problems with backtracking is that it leads to thrashing because backtracking has
a short-term memory and has to rediscover facts over and over again.

One of the major contributions of constraint satisfaction theory to artificial intelligence is the
notion of consistency. The improvement of backtracking by maintaining certain levels of consis-
tency and exploiting knowledge about the level of consistency ofCSPs has brought problems into

CHAPTER 2. CONSTRAINTS 16

the realm of feasible tasks that would have remained intractable without these improvements.

2.3 Constraint Logic Programming

2.3.1 Introduction

In this section we shall briefly discuss constraint logic programming (CLP). It is assumed that the
reader is familiar with logic programming, unification, and constraint satisfaction. The reader
who is not familiar with logic programming may wish to consult[Nilsson and Maluszynski,
1989; Apt, 1997; Bratko, 1986]. The reader not familiar with unification is referred to[Baader
and Siekmann, 1993; Siekmann, 1989] or [Lassezet al., 1988]. The reader not familiar with
constraint satisfaction may wish to consult Section 2.2 and the references presented therein.

Constraint logic programming is a generalisation of logic programming in the sense that it
does not depend onunificationto decide satisfiability. Instead, it uses constraint satisfaction. An-
other interesting feature of constraint logic programming is that it allows for constraints to appear
both in input and output. To understand why this is more general than the logic programming
approach, one may observe thatsyntactic equalityis the only way by which things can be unified
in logic programming. For example, if+ : C×C 7→ C is the addition operator as “usual” (not to
be confused with a logic programming functor) and· = · is a syntactically sugared version of the
equality relation, then it is impossible to use the built-in logic programming machinery to infer
that{x+ y = 0, x− y = 0 } entailsx = 0. Adding constraint satisfaction to logic programming
languages enlarges the set of formulae which are provably satisfiable.

The first real constraint logic programming language isPROLOG II which allows equations
and inequations overrational trees. Successors ofPROLOG II are all instances of constraint
logic programming languages[Colmerauer, 1984; 1987; 1990].

Another constraint programming language isCLP(R-Lin), which is an extension ofPRO-
LOG with linear inequalities over the reals[Jaffar and Lassez, 1986; 1987a; 1987b; Jaffaret
al., 1993; Heintzeet al., 1992]. A generalisation ofCLP(R-Lin) is RISC(CLP) which is not
restricted to linear (in)-equalities[Hong, 1992] (see also[Hong and Ratschan, 1995]).

The interested reader may wish to consult[Jaffar and Maher, 1994] for an excellent survey
of constraint logic programming.

The remainder of this section is as follows. Section 2.3.2 discussesCLP(R-Lin). RISC(CLP)
is discussed in Section 2.3.3. A selection of other constraint logic programming languages is
described Section 2.3.4. A summary is provided in Section 2.3.5.

2.3.2 CLP with Linear Inequalities over the Reals

This section discusses some aspects ofCLP(R-Lin) [Jaffar and Lassez, 1986; 1987a; 1987b;
Jaffaret al., 1993; Heintzeet al., 1992]. The discussion provides some background about the
implementation ofCLP(R-Lin), the soundness of the implementation, and the differences be-
tween theCLP(R-Lin) approach and the constraint satisfaction programming approach.

CHAPTER 2. CONSTRAINTS 17

In the following it is assumed without loss of generality that systems of equations and in-
equalities do not contain equations. This is justified because ifa andb are real thena = b ⇐⇒
a ≤ b ∧ b ≤ a.

CLP(R-Lin) is one of the earliest examples of a constraint logic programming language.
CLP(R-Lin) extendsPROLOGwith linear inequalities over the reals. TheCLP(R-Lin)-engine
works just likePROLOG’s resolution-machinery except for the fact that it can also decide the
satisfiability of linear inequalities over the reals. The first phase of Dantzig’sSimplex Algorithm
is used to decide the satisfiability of linear inequalities[Dantzig, 1963] (See also[Schrijver,
1996]). If it turns out that a certain branch in the search tree becomes infeasible due to an
inconsistency in the linear inequalities then backtracking takes place. If variables become ground
in the process of deciding satisfiability and if inequalities exist containing terms that are not
linear, then the values of the ground variables are substituted into the higher order inequalities
thereby possibly introducing inequalities that were not entailed by the old ones.

In the process of deciding satisfiability it is of utmost importance to restrict the number
of inequalities by removing redundant inequalities[Lassezet al., 1989]. Integrations of the
Simplex Algorithm and constraint engines which remove the need to copy the constraint-store
are discussed in[Jaakola, 1990] and[Van Hentenryck and Ramachandran, 1994].

The constraint logic programming approach ofCLP(R-Lin) differs from the constraint satis-
faction programming approach in the sense that constraint satisfaction programming maintains
consistency of thewholeproblem on alocal level, whereasCLP(R-Lin) maintains consistency
of part of the problem (linear inequalities) on aglobal level. Both approaches have proved to
work.

CLP(R-Lin) has been a great success both in and outside academia. Unfortunately, the im-
plementation ofCLP(R-Lin) is not sound because it depends on the underlying hardware for
carrying out floating point operations. Concerns about the efficiency of the implementation have
led to a decision to drop soundness. Though the efficiency certainly has contributed a lot to
its success, questions should be asked about the applicability of an unsound implementation of
CLP(R-Lin) as a general constraint programming tool.

2.3.3 CLP over the Reals

In this section we shall discussRISC(CLP) which was developed at the Research Institute for
Symbolic Computation (RISC) in Linz, Austria[Hong, 1992].

RISC(CLP) is another member of the constraint logic programming family. It is a general-
isation ofCLP(R-Lin) in the sense that it can be used to decide the satisfiability of sentences
in the first-order theory of the reals(FOTR). The first-order theory of the reals roughly con-
sists of quantified conjunctions and disjunctions of equalities, strict inequalities, inequalities,
and inequations. It is known since the 1930s thatFOTR is decidable[Tarski, 1951]. Tarski also
provided a decision algorithm. The complexity of Tarski’s method is not optimal and problems
in the first-order theory over the reals are generally very difficult. Recent work by Collins and
Hong has brought many problems from this theory into the realm of tractability that were in-
tractable with other methods[Collins and Hong, 1991]. Also of interest to the reader may be
[Hong, 1991] which contains an interesting comparison of the tractability of methods to decide

CHAPTER 2. CONSTRAINTS 18

problems in the first-order theory of the reals. More about the first-order theory of the reals can
be found in Section 2.4.2.

The algorithm used to implementRISC(CLP) usesquantifier eliminationto translate quanti-
fied formulae ofFOTR to equivalent formulae ofFOTR which contain strictly fewer quantified
variables. At the heart of the algorithm lies Collins’ Cylindrical Algebraic Decomposition (CAD)
with improvements by Collins and Hong. The interested reader is referred to[Collins and Hong,
1991; Mishra, 1993] for more information about theCAD-algorithm. RISC(CLP) keeps formu-
lae inFOTRconsistent and backtracks as soon as inconsistencies occur.

TheRISC(CLP)-engine uses Gröbner bases to simplify the constraint-store[Buchberger and
Hong, 1991]. This was shown to speed up the computation.

Unfortunately, the implementation ofRISC(CLP) is not available for use outside ofRISC.
RISC(CLP) is sound. According to Hong it is slow[Hong, 1992].

The difference between the constraint satisfaction programming approach and the constraint
logic programming approach ofRISC(CLP) is that the former keeps the whole problem partially
consistent, whereas the latter keeps apart of the problemglobally consistent. This is exactly
what constitutes the difference between constraint satisfaction programming andCLP(R-Lin).

2.3.4 Other CLP Dialects

This section discusses some selected members of the family of constraint logic programming
languages.

A system closely related toRISC(CLP) is CAL (Contrainte Avec Logique)[Aiba et al., 1988;
Sakai and Aiba, 1989; Sakai and Sato, 1990; Aiba and Hasegawa, 1992]. CAL uses Gröbner
bases to decide satisfiability of polynomial equations over the field of the complex numbers. The
main differences withRISC(CLP) are—of course—the domains of computation and the fact
thatCAL can only decide satisfiability over equations. Having said that, it should be noted that
inequations can be easily added toCAL because (in fields)a 6= b is satisfiable if and only if
c × (a − b) = 1 is satisfiable. Like all the constraint logic programming languages discussed
before,CAL keeps part of the problem (equations over the complex numbers) globally consistent.
CAL is sound.

A constraint logic programming based on interval arithmetic isCLP(BNR) developed at Bell
Northern Research[Older and Benhamou, 1993]. CLP(BNR) allows equations over boolean
formulae and constraints over integral domains as well as floating point intervals. It uses interval
arithmetic tonarrow the domains of the variables involved in constraints and answers over the
reals are returned as intervals which contain all the solutions. Here, an interval is narrowed if it
is transformed to a subset of that interval. The change of order of constraints inCLP(BNR) may
result in domains the bounds of which differ in precision. This illustrates the fact that, in general,
CLP(BNR) depends on operational semantics.

Unlike the other constraint programming languages we have seen until nowCLP(BNR) only
keeps part of the problem locally consistent.

Variations on the theme ofCLP(BNR) are discussed in[Benhamouet al., 1994; Benhamou,
1995]. An approach where different kinds of methods are combined to make problems glob-
ally more consistent is discussed[Benhamou and Granvilliers, 1996]. Three different methods

CHAPTER 2. CONSTRAINTS 19

were used to make problems consistent: (a) local consistency techniques, (b) symbolic rewriting
(Gröbner basis computation—a global consistency technique), and (c) interval methods (another
local consistency technique). They provide some (relatively small) examples where the transfor-
mation of sets of equations to Gröbner bases as a preprocessing method decreased the overall
solution time because the Gröbner bases were better suited for their interval algorithms.

2.3.5 Summary

Constraint logic programming has proved itself an interesting paradigm for the expression of
problems in the form of programs, the solution of these programs, and the computation of a rep-
resentation of the solutions in the form of constraints. Constraint logic programming languages
frequently keep part of the problem globally consistent as opposed to constraint satisfaction pro-
gramming which keeps the whole problem partially consistent. Work is undergoing to combine
local and global consistency techniques.

2.4 Related Work in Mathematics

2.4.1 Introduction

In this section we shall study certain kinds of constraints which occur in mathematics. We shall
provide references to the existing mathematical literature as part of the presentation.

The remainder of this section is as follows. In Section 2.4.2 we shall provide an introduction
to thefirst-order theory of the reals(FOTR). In Section 2.4.3 we shall discuss applications of the
first-order theory of the reals. We shall provide a brief summary in Section 2.4.4.

2.4.2 The First-Order Theory of the Reals

This section formally definesFOTR [Renegar, 1992a; 1992b; 1992c; Arnon, 1988; Arnon and
Mignotte, 1988]. The decision problem for the first-order theory of the reals is the problem of
determining the truth-values of certain kinds of formulae. These formulae may involve universal
and existential quantifiers as well as the Boolean disjunctive and conjunctive connectives. At
the “lowest” level, formulae are comparisons of polynomials whose coefficients are real. Valid
sentences inFOTRsatisfy the following four rules:

1. If x is a row matrix of variables,p(x) a polynomial whose variables are a subset of the
variables inx and whose coefficients are real, and∆ one of the comparison operators in
{=, 6=, <,>,≤,≥} thenp(x)∆0 is a sentence inFOTR.

2. If S1 andS2 are sentences inFOTRand⊕ is∨ (disjunction) or∧ (conjunction) thenS1⊕S2

is a sentence inFOTR.

3. If S is a sentence inFOTR, x is a row matrix of variables, andQ is one of the quantifiers
in { ∃,∀ } then(Qx)(S) is a sentence inFOTR. Here, the quantification ofQx overS is

CHAPTER 2. CONSTRAINTS 20

the obvious one, namely the quantification of the variables inx overS. If Q = ∃ then the
quantification is existential. IfQ = ∀ then the quantification is universal.

4. If S is a sentence inFOTR then so is¬S.

It can be shown that every formula inFOTR can be written as an equivalent formula which
has the following form:

(Q1x1 ∈ Rc1)(Q2x2 ∈ Rc2) · · · (Qnxn ∈ Rcn)(P (x1,x2, . . . ,xn)), (2.1)

whereci is a positive integer, andQi ∈ {∀,∃ }, for 1 ≤ i ≤ n, such thatQi 6= Qi+1, for
1 ≤ i < n, and whereP (x1,x2, . . . ,xn) is a quantifier free Boolean formula of the form:

p1(x1,x2, . . . ,xn) ∆1 0 ⊕1
...

...
...

...
pτ−1(x1,x2, . . . ,xn) ∆τ−1 0 ⊕τ−1

pτ (x1,x2, . . . ,xn) ∆τ 0,

wherepk is a real polynomial, and∆k ∈ {=, 6=, <,>,≤,≥}, for 1 ≤ k ≤ τ , and where
⊕j ∈ {∨,∧}, for 1 ≤ j < τ . Formulae like the one in Equation (2.1) are calledsentences. The
reader is referred to[Renegar, 1992a] for further details.

Example 2.13 (Sentence).The following formula is a sentence inFOTR:

(∃[i] ∈ R1)(∀[j] ∈ R1)(i− j > 0).

The sentence is obviously false.

Tarski has provided a decision algorithm for sentences inFOTR where there is only one ex-
istential quantifier[Tarski, 1951]. By making slight modifications to the algorithm, this can be
turned into a decision method forFOTR. Tarski’s method is by no means optimal and better
methods have since then been discovered[Renegar, 1992a; 1992b; 1992c; Collins and Hong,
1991]. This thesis provides no complexity results for sentences inFOTR. The only statement
that will be provided about the complexity of the decision problem ofFOTR is that this problem
is significantly more difficult than other commonly arising problems.[Hong, 1991] compares
several algorithms to decide problems inFOTR and gives an indication of the solution time of
certain problems which are currently tractable. It demonstrates that—at least at the moment it
was written—tractable problems should be decided with algorithms whose worst-case time-com-
plexities are not optimal.

Let X = {x1, . . . , xn } be a non-empty set of variables and let(X,D,C) be a finiteCSP,

whereC = {CS1 , . . . , CSm }, Si =
{
xi1 , . . . , xiki

}
, and1 ≤ ki ≤ n, for 1 ≤ i ≤ m. Without

loss of generality it may be assumed that the domains of the variables are subsets of the reals.
It is important to notice that thedecisionCSP—the problem of deciding whether there exists an
“assignment” to the variables inX that satisfies each of the constraints—is an instance ofFOTR.

CHAPTER 2. CONSTRAINTS 21

As a consequence of this, techniques that are used to decideFOTR are also applicable to the
decisionCSP. The name “decisionCSP” is due to[Bowen and Bahler, 1991].

It is not difficult to show that the decisionCSP is an instance ofFOTR. For example, let
S = {x1, . . . , xn }, and letCS be the constraint given by

CS = { (v11, . . . , v1n), . . . , (vm1, . . . , vmn) } ,

thenCS is satisfiable if and only if the following sentence inFOTR is true:

(∃(x1, . . . , xn) ∈ Rn)((x1 = v11 ∧ · · · ∧ xn = v1n) ∨ · · · ∨ (x1 = vm1 ∧ · · · ∧ xn = vmn)).

A CSPis satisfiable if there is a member of the Cartesian product of the domains of the variables
which satisfies each of the constraints. It is left as an exercise for the reader to formulate the
satisfiability of a generalCSPas a sentence inFOTR.

2.4.3 Applications of FOTR

The first order theory of the reals has many applications and this section briefly discusses some
of them. Our discussion is by no means complete and we shall only discuss approaches which
are related to constraint logic programming.

An interesting application ofFOTR is to quantifier elimination for special cases[Weispfen-
ning, 1993]. Obvious applications ofFOTRare to the satisfiability of systems of equations. This
opens the door to geometric theorem proving (see e.g.[Kutzler and Stifter, 1986; Kapur, 1986;
Sturm and Weispfenning, 1996]).

Less obvious applications are to decision problems that may arise as part of optimisation
problems[Weispfenning, 1994] (see also[Hong and V̆asaru, 1996]).

As pointed out in the previous section, the decision problem for certain kinds ofCSPs are
also instances ofFOTR. Questions concerning the continuity of functions can also be expressed
in FOTR.

In [Weispfenning, 1997] examples are provided ofFOTR to the analysis of electronic net-
works and hydraulic networks (see also[Weispfenning, 1994; 1996]). An interesting side effect
of the method used is that—as in constraint logic programming—expressions are returned that
are necessary and sufficient conditions to guarantee that certain properties in these networks
hold. The expressions that were returned are useful because they can be used to locate critical
parts of the design. A disadvantage of the method is that the expressions which are returned
are large and a lot of work has to be put into their simplification[Dolzmann and Sturm, 1995;
Dolzmannet al., 1996; Dolzmann and Sturm, 1997a; 1997b].

2.4.4 Summary

Special instances of problems occurring in the first-order theory of the reals have been studied
for centuries. It is only since the 1930s that a general decision method has been known to decide
any problem in this theory.

CHAPTER 2. CONSTRAINTS 22

The area of applications ofFOTR is vast and ranges from certain classes of decisionCSPs to
optimisation problems and geometric theorem proving.

It has only been since much more recently that methods have become available that can be
applied to less trivial problems inFOTR.

2.5 Summary

In this chapter we have studied the use of constraints in different areas and methods to solve
them. In particular we have studied constraint satisfaction problems (CSPs), constraint logic
programming (CLP), and the first order theory of the reals (FOTR).

Constraint satisfaction problems are usually solved with variations of the chronological back-
tracking algorithm. The low level of consistency which mostCSPs have in common causes
thrashing and frequently leads to virtually endless search. The maintenance of low levels of
consistency during search has proved to significantly improve the efficiency of search.

Constraints also occur in constraint logic programming. Different constraint programming
languages may have different domains of computation. Domains of computation range from
linear inequalities over the reals (CLP(R-Lin)), to equalities over the complex numbers (CAL),
to sentences over the reals (RISC(CLP)), and many more. Some constraint logic programming
languages maintain global consistency over their domain of computation. This has also proved
to reduce thrashing.

Constraint satisfaction programming and constraint logic programming have different ap-
proaches to the level of consistency they maintain during search. Constraint satisfaction pro-
gramming maintains partial levels of consistency over the problem as a whole, whereas many
constraint logic programming languages maintain global consistency over a part of the problem.
It remains to be seen if a combination of the two approaches could lead to an improvement.

The first-order theory of the reals allows for the formulation of many interesting problems.
Since the 1930s this theory has been known to be decidable. A common solution technique
for FOTR is quantifier elimination (sometimes restricted to special cases). Recent work has
provided quantifier elimination algorithms which bring the decidability of interesting problems
into the realm of feasibility. It can be shown that the decidability of the satisfiability of finite
constraint satisfaction problems can be formulated as decision problems inFOTR.

Chapter 3

Varieties, Ideals and Gröbner Bases

3.1 Introduction

This chapter is an introduction tovarieties, ideals, andGröbner bases. The purpose of this
chapter is to provide the required background for the next two chapters of this thesis.

Polynomial ideals are a useful tool for the expression and solution of many problems occur-
ring in mathematics and the “real” world. Ideals can be used for the decision of the satisfiability
of systems of equations, variable elimination, solution of simultaneous equations, and so on. Va-
rieties are sets consisting of the common zeros of polynomial ideals. As such, they are intimately
related to polynomial ideals. It will turn out that there also is a close relationship between cer-
tain kinds of varieties and finite constraints. Finite constraints—as we shall see in the following
chapter—are in essence varieties. This allows for the translation of constraints to polynomial
ideals, thereby allowing for the application of algorithms from ideal theory. The existence of the
translation technique also means that it is possible to integrate discreteCSPs and problems of a
continuous nature. This possibility, being interesting in itself, will not be further explored in this
thesis.

Buchberger provided an algorithm (the Buchberger algorithm) for the computation of Gröb-
ner bases in the 1960s. Gröbner bases provide useful tools in polynomial ideal theory. They
allow for the decidability and solution of many problems which before their invention were not
known to be solvable. Gröbner bases allow for the solution of each of the following problems:

ideal membership is a given polynomial a member of a given ideal?

consistency problemdo the members of a given ideal have common zeros?

variable elimination eliminate certain variables from a given ideal.

dimension what is the dimension of a given ideal?

counting if a given ideal is zero-dimensional, i.e. if the members of the ideal have a non-zero
finite number of common zeros, how many such common zeros are there?

23

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 24

As observed by Buchberger, there is also a relationship betweencompletion algorithmssuch
as the Knuth-Bendix algorithm[Knuth and Bendix, 1970] andcritical pair algorithms like the
Buchberger algorithm (See[Buchberger, 1987; Winkler, 1984]). Buchberger’s observation al-
lowed for improvements to the Knuth-Bendix algorithm similar to improvements—usually called
Buchberger’s criteria—made to the Buchberger algorithm.

In the remainder of this chapter we shall explain how each of the aforementioned prob-
lems can be solved using Gröbner basis theory and we shall provide the required mathematical
background. In addition, we shall point out some relationships between constraint satisfaction
problems and algebra. The style of presentation will be informal. It is only required that the
reader is familiar with the notion of aring in algebra. Throughout, we shall use examples to in-
troduce ideas and exemplify certain concepts. It is not the purpose of this chapter to provide deep
insights but to provide insights which are “easy” to remember and grasp. The reader interested
in a complete presentation of Gröbner bases and the required background is referred to[Becker
and Weispfenning, 1993; Adams and Loustaunau, 1994]. The reader interested in Gröbner bases
and their relationship with geometry is referred to[Cox et al., 1996]. The reader interested in a
short introduction to Gröbner bases is referred to[Buchberger, 1985].

The remainder of this chapter is as follows. In Section 3.2 we shall study polynomial ide-
als and varieties and point out some relationships between ideals, varieties and constraints. In
Section 3.3 we shall provide a formal definition of Gröbner bases. Section 3.4 consists of a
presentation of several Gröbner basis algorithms for the decision and solution of problems in
polynomial ideal theory.

3.2 Ideals and Varieties

3.2.1 Introduction

In this section we shall study ideals and varieties. The presentation will be of an informal nature.
Systems of polynomial equations have been studied for millenia. This has led to the notion

of apolynomial idealwhich captures properties of such systems very well.Varietiesare solution
sets of systems of polynomial equations. Certain classes of ideals and varieties turn out to be
very closely related to finite constraints and we shall study their relationship.

Beside “ordinary” ideals, we shall also study special ideals:vanishing idealswhich char-
acterise varieties,elimination idealswhich have an application to the solution of systems of
polynomial equations, andradical idealswhich correspond to certain kinds of vanishing ideals.

3.2.2 Ideals

In this thesis we shall only consider commutative rings with unity, i.e. we shall only consider
rings (R, ·,+) where multiplication is commutative and where there is a special member1 ∈
R \ { 0 } such that(∀r ∈ R)(r = 1 · r).

Definition 3.1 (Ideal). LetR be a ring. A subringI ofR is called anidealofR if (∀r ∈ R)(∀i ∈
I)(ri ∈ I).

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 25

Definition 3.2 (Generating System of Ideal).Let I be an ideal of ringR. A generating system
of I is a subset, sayF , of I such that every memberi of I can be written as a sum of the form:

i =
∑
f∈F

φi(f)f,

whereφi(·) is some function fromF to R which hasfinite support, i.e. φi(·) has the property
that there are only finitely manyf ∈ F such thatφi(f) 6= 0. An ideal is said to begeneratedby
F ⊆ R if F is a generating system ofI. The ideal generated byF will be denoted〈F 〉. The
ideal generated by{ f1, . . . , fm } will also be denoted〈 f1, . . . , fm 〉.

Thesumof two idealsI andJ is the set containing all sums of members fromI andJ . The
sum ofI andJ is denotedI + J and is given by

I + J = { i+ j : (i, j) ∈ I×J } ,
where·×· is the Cartesian product operator. It is a straightforward exercise to prove thatI + J
is, again, an ideal.

Polynomial ringsare a special kind of rings. We shall denote the polynomial ring in (com-
muting) variablesX = {x1, . . . , xn } over ringR asR[X] or asR[x1, . . . , xn]. It contains all
polynomials (including the zero polynomial) whose coefficients are inR and whose terms are
power-products of the members ofX.

A non-zero memberu of ringR is called aunit if there is av ∈ R such thatuv = 1. A ring
is called afield if every non-zero member of that ring is a unit. With the exception of a single
section in Chapter 4 where we shall consider other fields as well, the only field which we shall
consider in this thesis isC and we shall writek for that field.

An idealI of ringR is called aproper ideal ofR if I ⊂ R. An ideal which has a generating
system whose cardinality is finite is called afinitely generatedideal. A ring is calledNoetherian
if every ideal of that ring is finitely generated. The following theorem is better known as Hilbert’s
Basis Theorem.

Theorem 3.3.LetR be a Noetherian ring, thenR[x] is also a Noetherian ring.

A field is a Noetherian ring because it only contains the two ideals{ 0 } and〈 1 〉. One of
the consequences of Hilbert’s Basis Theorem is that ideals in polynomial rings with coefficients
in fields are finitely generated. Although they have not been defined yet, this is a good point to
state that Gröbner bases are finite generating systems of polynomial ideals with some interesting
properties.

LetX andW ⊆ X be non-empty sets of variables and letI be an ideal ofk[W]. The smallest
ideal (with respect to inclusion) ofR = k[X] containingI will be denotedIR. It is called the
R-moduleof I.

3.2.3 Varieties

An affine1 variety in mathematics is a set which has the property that it is the smallest set (with
respect to inclusion) containing the common zeros of some set of polynomials from some poly-

1The word affine means connected.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 26

nomial ideal. LetX = {x1, . . . , xn } be a non-empty set of variables, and letF ⊆ k[X]. The
variety of F is the set where each of the polynomials inF vanishes, i.e. “becomes” zero. We
shall normally order variables according to the “usual” lexicographical ordering· <lex · . Nor-
mally, we shall assume thatxi <lex xj ⇐⇒ i < j. The following provides a formal definition
of a variety.

Definition 3.4 (Variety). Let n be a positive integer, and letX = {x1, . . . , xn } be a set of
variables such thatxi <lex xj ⇐⇒ i < j, for 1 ≤ i, j ≤ n. Furthermore, letk be a field, and
let F ⊆ k[X]. Thevarietyof F in kn is denotedV (F) and is defined as follows:

V (F) = { (v1, . . . , vn) ∈ kn : F ⊆ 〈x1 − v1, . . . , xn − vn 〉 } .
Note thatF ⊆ 〈 x1 − v1, . . . , xn − vn 〉 if and only if the substitution of(v1, . . . , vn) for

(x1, . . . , xn) into each of the members ofF is zero. It is a trivial exercise to show thatV (F) =
V (〈F 〉) for everyF ⊆ k[X].

It is important to note that ifF ⊆ k[x1, . . . , xn] andV = V (F) then the ordering on the
variables decides which member of a tuple(v1, . . . , vn) ∈ V corresponds to which variable. Our
lexicographical variable ordering is such thatvi corresponds toxi and vice versa, for1 ≤ i ≤ n.

Example 3.5 (Variety (1)). Let k = C, letf = x+y−1, and letg = x−y−1. The intersection
of the linesf = 0 andg = 0 is the same as the variety ink2 of the idealI of k[x, y] which is
generated by{ f, g }. The following demonstrates how to find the intersection.

V (I) = V (〈 f, g 〉)
= V (〈x+ y − 1, x− y − 1 〉)
= V (〈x+ y − 1, (x− y − 1) + (x+ y − 1) 〉)
= V (〈x+ y − 1, 2x− 2 〉)
= V (〈x+ y − 1, x− 1 〉)
= V (〈 (x+ y − 1)− (x− 1), x− 1 〉)
= V (〈 y, x− 1 〉)
= { (1, 0) } .

Example 3.6 (Variety (2)).Letk = C, letf = x2+y2−1, and letg = y−x2. Interpretations for
f andg are that they represent the unit circlex2 + y2 = 1 and the parabolay = x2, respectively.
The intersection of the two is the set of common zeros off andg. See Figure 3.1 for a graphical
depiction.

Let I = 〈 f, g 〉. The common zeros off andg in k2, the intersection of the circle and the
parabola ink2, the complex solutions of the system of simultaneous equationsx2 + y2 = 1 and
y = x2 andV (I) are all the same. The following shows how to findV (〈 f, g 〉).

I =
〈
x2 + y2 − 1, y − x2

〉
=
〈

1× (x2 + y2 − 1)− y × (y − x2), y − x2
〉

=
〈
yx2 + x2 − 1, y − x2

〉
=
〈

1× (yx2 + x2 − 1)− x2 × (y − x2), y − x2
〉

=
〈
x4 + x2 − 1, y − x2

〉
.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 27

y = 0

x = 0

x2 + y2 = 1

y = x2

Figure 3.1: Intersection of circle and parabola.

Therefore,V (〈 f, g 〉) = V (〈x4 + x2 − 1, y − x2 〉). The generating system{
x4 + x2 − 1, y − x2

}
of I clearly indicates that there are at most four complex solutions. It does this as follows. The
degree of the univariate polynomial inx is four. Therefore, there are at most four different zeros
for x for which this polynomialvanishes, i.e. “becomes” zero. The polynomialy − x2 is linear
in y. For every zero ofx4 − x2 − 1 for x there is exactly oney for which the polynomialy − x2

vanishes. Therefore, the number of zeros is at most four.
The polynomialx4 − x2 − 1 has fewer than four zeros if and only if it has zeros whose

multiplicity are greater than one. It has four zeros if and only if the multiplicity of each of
its zeros is one. As will be shown later in this chapter a simple algorithm exists to transform
polynomials likex4 + x2 − 1 into a polynomialh such thath has the same zeros and such that
the multiplicity of each of the zeros ofh is 1. With the aid of this algorithm it is possible to
determine that there are exactly four zeros.2 To find these zeros is the subject of a story with
which this thesis will not be concerned. See for example[Becker and Weispfenning, 1993,
Algorithm STURMSEQ] for an algorithm to isolate the real zeros of a uni-variate polynomial.

A field k is calledalgebraically closedif every non-constant polynomial ink[x] has a zero.
The algebraic closureof k is the smallest superset ofk (with respect to inclusion) which is
algebraically closed.

An ideal I of k[X] is calledconsistentif 1 /∈ I and inconsistentotherwise. It is a trivial
exercise to prove that an idealI of a ringR is a proper ideal ofR if and only if 1 /∈ I [Becker
and Weispfenning, 1993, Lemma 1.39]. It is not difficult to see that if1 ∈ I thenV (I) = ∅. If k
is an algebraically closed field the converse is also true. This is stated as the following theorem.

2The zeros are given by
√√

5− 1/2,−
√√

5− 1/2, i
√√

5 + 1/2 and−i
√√

5 + 1/2.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 28

Theorem 3.7 (Hilbert’s Weak Nullstellensatz).Letk be an algebraically closed field, letX be
a non-empty set of variables, and letI be an ideal ofk[X], thenI is consistent if and only ifI is
a proper ideal ofk[X] if and only if1 /∈ I if and only ifV (I) 6= ∅.

The reader is referred to[Cox et al., 1996, Hilbert’s Weak Nullstellensatz] for proof and
further details.

Note that ifI ⊆ k[X] then Hilbert’s Weak Nullstellensatz provides us with information about
the existence of common zeros of the members of an ideal. Ifk is algebraically closed then there
are no common zeros if and only if1 ∈ I. Even ifk is not algebraically closed then there are no
zeros if1 ∈ I.

3.2.4 Vanishing Ideals

The ideal of a varietyV is the ideal containingall polynomials thatvanishatV , i.e. it contains
all the polynomials that “become” zero at each of the members ofV . It is for this reason that
the ideal ofV is also referred to as thevanishingideal ofV . The following provides a formal
definition of a vanishing ideal.

Definition 3.8 (Vanishing Ideal). LetX = {x1, . . . , xn } be a non-empty set of variables, letk
be a field and letV ⊆ kn. Thevanishing idealof V is denotedI(V) and is defined as follows:

I(V) = { f ∈ k[X] : (∀(v1, . . . , vn) ∈ V)(f ∈ 〈 x1 − v1, . . . , xn − vn 〉) } .

It is a trivial exercise to show that vanishing ideals are, indeed, ideals. Note that Definition 3.8
implies that the following holds:

I(V) = { f ∈ k[X] : (∀(v1, . . . , vn) ∈ V)(f ∈ 〈 x1 − v1, . . . , xn − vn 〉) }
= { f ∈ k[X] : (∀v ∈ V)(f ∈ I({ v })) }
= { f ∈ k[X] : f ∈ ∩v∈V I({ v }) }

= k[X] ∩
⋂
v∈V

I({ v })

=
⋂
v∈V

(k[X] ∩ I({ v }))

=
⋂
v∈V

I({ v }).

This equivalence will allow us—as will be shown further on in this thesis—to transform a con-
straint network to a generating system of a polynomial ideal whose common zeros are the so-
lutions of the network thus allowing for the application of algorithms from ideal (read Gröbner
basis) theory to problems occurring in constraint satisfaction theory.

Example 3.9 (Vanishing Ideal).Let k = C, let n = 1, let V = { 0 }, and letI = I(V) be the

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 29

vanishing ideal ofV ⊂ k. Then

I = { f ∈ k[x] : (∀v ∈ { 0 })(f ∈ 〈 x− v 〉) }
= { f ∈ k[x] : f ∈ 〈 x− 0 〉 }
= { f ∈ k[x] : f ∈ 〈 x 〉 }
= k[x] ∩ 〈x 〉
= 〈x 〉 .

An idealI of ring R is called amaximalideal ofR if I is a proper ideal ofR andI + J ∈
{ I, R } for every idealJ of R. Ideals of the formI({ v }) are maximal ideals. The maximal
ideal I = 〈x1 − v1, . . . , xn − vn 〉 of k[x1, . . . , xn] is the vanishing ideal of the single point
(v1, . . . , vn) of the affine spacekn.

3.2.5 Elimination Ideals

Another special kind of ideal is anelimination ideal. These have several applications. One
application is to finding the common zeros of polynomials. The following provides a formal
definition of elimination ideals.

Definition 3.10 (Elimination Ideal). Let k be a field, letX andW ⊆ X be non-empty sets of
variables, and letI be an ideal ofk[X]. Theelimination idealof I with respect toW is the ideal
I ∩ k[W]. The elimination ideal ofI with respect toW is denoted asIW (I).

The elimination ideal ofI ⊆ k[X] with respect toW consists of all the polynomials inI each
of whose terms involve only power-products of variables inW .

Example 3.11 (Elimination Ideal (1)). Let k = C, and let

I =
〈

(x− 2)2 + (y − 2)2 − 4, y − (x− 2)2
〉
⊆ k[x, y].

We can eliminatey from I by “substituting”(x− 2)2 for y “in” I. This leads to the elimination
idealI ∩ k[x] = 〈x4 − 8x3 + 21x2 − 20x+ 4 〉.

One application of elimination ideals is to the solution of systems of simultaneous polynomial
equations by recursively eliminating variables and extending partial solutions.

Example 3.12 (Elimination Ideal (2)). Let k = C. The system

E =
{

(x− 2)2 + (y − 2)2 = 4, y = (x− 2)2
}

can be solved using elimination ideals. SolvingE corresponds to computing the set of com-
mon zerosV ⊆ k2 of the polynomials inF = { (x− 2)2 + (y − 2)2 − 4, y − (x− 2)2 } ⊆
k[x, y]. V = V (F) = V (I), whereI = 〈F 〉. We discovered in Example 3.11 that to
eliminatey from I leads to the elimination idealI ∩ k[x] = 〈x4 − 8x3 + 21x2 − 20x+ 4 〉 =〈

(x− 2)2(x− 2 +
√

3)(x− 2−
√

3)
〉
. The common zeros of the elements inI∩k[x] are given

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 30

by x ∈
{

2−
√

3, 2, 2 +
√

3
}

. For each common zero forx of the members ofI ∩ k[x] there is
exactly one extended zero for(x, y) of the members ofI ∩ k[x, y] = I. The solutions ofE are
therefore given by

{
(2−

√
3, 3), (2, 0), (2 +

√
3, 3)

}
, i.e. the equations inE are simultane-

ously true precisely when(x, y) = (2−
√

3, 3) or (x, y) = (2, 0) or (x, y) = (2 +
√

3, 3).

As will be shown further on in this chapter, Gröbner Basis Theory provides an algorithm to
compute elimination ideals.

In the process of finding the common zeros of polynomials using elimination ideals it fre-
quently occurs that an ideal is “projected” onto a “smaller” ideal. After the common zeros of the
members of the smaller ideal have been located, each such common zero has to be extended to
a common zero of the members of the “bigger” ideal. This extension process, as we shall see
in the following example (adapted from[Cox et al., 1996, p. 115]) is not always guaranteed to
succeed.

Example 3.13 (Failing Extension).Let k = C, letX = {x, y, z }, letF = {xz − 1, yz − 1 },
and letI = 〈F 〉 ⊂ k[X]. It can be shown that the elimination ideal ofI with respect to{x, y }
is given by:

I ∩ k[x, y] = { y − x } .

Therefore, the common zeros of the members ofI ∩ [x, y] are given by{ (v, v) : v ∈ k }. How-
ever, the partial solution(0, 0) cannot be extended to a solution includingz.

In the previous example we have seen that the extension of partial solutions is not always
guaranteed to succeed. In the following paragraphs we shall present a theorem which provides
a sufficient condition to guarantee the extension of partial solutions. Before doing so we remind
the reader that ifI is an ideal ofk[x1, . . . , xn] then(v1, . . . , vn) ∈ V (I) if and only if every
polynomialf ∈ I vanishes for the simultaneous substitution(v1, . . . , vn) for (x1, . . . , xn) in f ,
that is:

(v1, . . . , vn) ∈ V (I) ⇐⇒ I ⊆ 〈x1 − v1, . . . , xn − vn 〉 .

Before we study the Extension Theorem which provides a sufficient condition for the ex-
tension of partial solutions, we have to define the notion of theleading coefficientof a vari-
able in a multivariate polynomial. This notion will only be used in this part of the thesis. Let
f ∈ k[x1, . . . , xn] be a non-zero polynomial. Notice that we can uniquely write every non-zero
f as a sum of the formf =

∑α
i=0 cix

i
n, for suitably chosenα and ci such thatcα 6= 0 and

ci ∈ k[x1, . . . , xn−1], for 0 ≤ i ≤ α. We callcα the leading coefficientof xn in f .
The following theorem can be found in slightly different form in[Cox et al., 1996, Theo-

rem 3, Page 115]. The theorem provides a sufficient condition to guarantee when partial solutions
can be extended.

Theorem 3.14 (Extension).Let X = {x1, . . . , xn } be a set containing at least two vari-
ables, letk = C, let F = { f1, . . . , fm } ⊂ k[X] \ { 0 }, and let I = 〈F 〉 ⊆ k[X]. Fi-
nally, let gi be the leading coefficient ofxn in fi, for 1 ≤ i ≤ m. If I ∩ k[x1, . . . , xn−1] ⊆
〈x1 − v1, . . . , xn−1 − vn−1 〉 and 〈 g1, . . . , gm 〉 6⊆ 〈x1 − v1, . . . , xn−1 − vn−1 〉 then there exists
vn ∈ k such thatI ⊆ 〈x1 − v1, . . . , xn − vn 〉.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 31

The Extension Theorem states that every partial solution forx1, . . . ,xn−1 can be extended to
a partial solution forx1, . . . ,xn if the leading coefficients ofxn of the polynomials inF do not
vanish simultaneously.3 The reader is referred to[Cox et al., 1996, Theorem 3, Page 115] for
proof and further details about the Extension Theorem and Elimination Theory.

Note that in Example 3.13 the leading coefficients ofz of the members of the generating
system of the ideal vanish simultaneously for the case wherex = y = 0. Therefore, the extension
of the partial solutionx = y = 0 was not guaranteed.

Related to the notion of an elimination ideal is that of thedimensionof an ideal.

Definition 3.15 (Dimension of Ideal).Let X be a non-empty set of variables andI a proper
ideal ofk[X]. Thedimensionof I is defined as:

max({ |W | : W ⊆ X, I ∩ k[W] = { 0 } }).

Without proof it is stated thatzero-dimensional idealsare proper ideals the cardinality of the
varieties of which is finite.

3.2.6 Radical Ideals

Another special kind of ideals areradical ideals. Radical ideals ink[x1, . . . , xn] and varieties in
kn are closely related. Ifk is algebraically closed then there is a one-to-one relationship between
the two.

Definition 3.16 (Radical Ideal). Let X be a non-empty set of variables. A proper idealI of
k[X] is called aradical ideal ofk[X] if it satisfies the property that:

(∀m ∈ N \ { 0 })(∀p ∈ k[X])(pm ∈ I =⇒ p ∈ I).

Theradical of an idealI is the ideal{ f ∈ k[X] : (∃m ∈ N \ { 0 })(fm ∈ I) }. The radical ofI
is denoted

√
I.

Note that an idealI is a radical ideal if and only ifI =
√
I.

Example 3.17 (Radical Ideal (1)).Letk = C and letI = 〈x2 〉. Clearly
√
I = 〈x 〉. The variety

V ⊂ k of I ⊂ k[x] contains the common zeros of the members ofI, i.e. V = V (I) = { 0 }.
The idealJ of the varietyV contains all univariate polynomials inx which vanish at0. In order
for a univariate polynomial inx to vanish at0 it has to be of the formx × f , wheref is some
polynomial ink[x]. Therefore,J = I(V) = {x× f : f ∈ k[X] } = 〈x 〉. Note thatx ∈ J ,
x× x = x2 ∈ J andx /∈ I. Therefore,I = 〈x2 〉 ⊂ 〈x 〉 =

√
I = J ,

Example 3.18 (Radical Ideal (2)).Let k = C and letI be the ideal given by:

I =
〈
x2(x− 1), (x2 + 1)(x− 1)

〉
⊂ k[x].

3Note that the Extension Theorem only provides a sufficient condition for extension. It does not state that the
extension is impossible if the leading coefficients do vanish simultaneously.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 32

ThenI is radical. For example,

I =
〈
x2(x− 1), (x2 + 1)(x− 1)

〉
=
〈
x2(x− 1), (x2 + 1)(x− 1)− x2(x− 1)

〉
=
〈
x2(x− 1), x− 1

〉
= 〈x− 1 〉 ,

and it is not difficult to see thatI =
√
I.

Example 3.19 (Radical Ideal (3)).Let k = C and letI be the ideal given by:

I =
〈
x2(x− 1)

〉
⊂ k[x].

It is not difficult to see thatI is not a radical ideal. For example, each polynomial inI is of the
form fx2(x − 1), for somef ∈ k[x]. For the particular choice off = x − 1 it follows that
(x − 1)x2(x − 1) = (x(x − 1))2 ∈ I. SinceI contains(x(x − 1))2 it follows that

√
I contains

x(x− 1), whereasx(x− 1) is not inI.

Let k be any field and letp ∈ k[x] be a polynomial withm ≥ 1 distinct zerosv1, . . . ,vm. The
square-free partof p is defined as

∏m
i=1(x− vi). A polynomial which is equal to its square-free

part (up to multiplication by a constant) is called asquare-free polynomial. The square-free part
of a non-constant univariate polynomialf ∈ k[x] can be computed by dividingf by gcd(f, df

dx
),

wheredf
dx

is the first derivative off with respect tox, andgcd(p, q) is thegreatest common divisor
of p andq. The reader is referred to[Cox et al., 1996, Proposition 12, Page 179] for proof and
further details.

A non-zero univariate polynomial is calledmonicif its leading coefficient is1. A polynomial
f ∈ k[x] \ { 0 } is calledirreducible if f = gh implies that eitherg or h is a unit. A polynomial
in k[x] is calledseparableif it does not have multiple zeros inK[x], whereK is thealgebraic
closureof k. A field k is calledperfectif every irreducible polynomial ink[x] is separable. The
field of the complex numbersC is perfect[Becker and Weispfenning, 1993, p. 311]. Finite fields
are also perfect[Becker and Weispfenning, 1993, Corollary 7.73].

The following lemma can be found as[Becker and Weispfenning, 1993, Lemma 8.19].

Lemma 3.20 (Zero-Dimensional Radical Ideal).Letk = C, letX = {x1, . . . , xn } be a set of
variables, and letI be a zero-dimensional ideal ofk[X]. Furthermore, letfi be the unique monic
polynomial of minimal degree inI ∩ k[xi] and letgi be the square-free part offi, for 1 ≤ i ≤ n.
Then √

I = I + 〈 g1, . . . , gn 〉 .

Each of the polynomialsfi can be computed by computing a generating system of the elimi-
nation idealI ∩ k[xi].

As will be pointed out further on in this section, Gröbner Basis Theory provides a simple
algorithm which, if provided with a generating system of an ideal, can be used to compute
generating systems of elimination ideals of that ideal. Together with Lemma 3.20, the algorithm
can be used to compute a generating system of the radical of a zero-dimensional ideal.

The following theorem can be found as[Coxet al., 1996, Proposition 16, Chapter 4].

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 33

Theorem 3.21 (Radical Ideal Intersection).If I andJ are radical ideals ofk[X] thenI ∩ J is
also a radical ideal ofk[X].

In general, it does not hold thatI+J is radical ifI andJ are radical. For example, letI = 〈x 〉
andJ = 〈x+ y2 〉, thenI andJ are radical butI + J = 〈x, x+ y2 〉 = 〈x, x− x+ y2 〉 =
〈x, y2 〉 is not. However, ifI andJ are zero-dimensional radical ideals then we can prove that
for special cases their sum is zero-dimensional and radical. This is formulated as the following
proposition which will turn out to be useful in the following chapter.

Proposition 3.22 (Radicality). Let m be a positive integer. For each positive integeri less
than or equal tom let Xi be a non-empty set of variables. Furthermore, letX = ∪mi=1Xi, let
R = k[X], let Ii be a zero-dimensional radical ideal ofk[Xi] and letRi be theR-module ofIi,
for 1 ≤ i ≤ m. Finally, letJ ⊆ k[X] be the ideal given by

J =
m∑
i=1

Ri.

Then eitherJ is inconsistent orJ is a zero-dimensional radical ideal ofR.

Proof. AssumeJ is consistent.Ii is zero-dimensional and radical. By Lemma 3.20,Ii contains
a non-constant square-free polynomial of minimal degree ink[xij], for each of the variables
xij ∈ Xi, for 1 ≤ i ≤ m. Note thatIi ⊆ Ri ⊆ J , for 1 ≤ i ≤ m. Therefore,J also contains a
non-constant square-free polynomial of minimal degree ink[x], for each of the variablesx ∈ X.
J is consistent and contains a non-constant square-free polynomial of minimal degree ink[x],
for each of the variablesx ∈ X. Therefore,J ∩ k[x] contains a unique non-constant square-free
polynomial of minimal degree ink[x], for eachx ∈ X. It now follows from Lemma 3.20 thatJ
is zero-dimensional and radical.

3.2.7 Ideal-Variety Correspondence

In this section we shall study the relationship between ideals and varieties in greater detail. In
particular we shall study the relationship between radical ideals and varieties, the relationship
betweenintersectionof two ideals and the union of their varieties, and the relationship between
thesumof two ideals and the intersection of their varieties.

Radical Ideals and Varieties

The following theorem is important because it provides information about the structure of van-
ishing ideals.

Theorem 3.23 (Hilbert’s Strong Nullstellensatz).Letk be an algebraically closed field. IfI is
an ideal ofk[X] then the radical ofI and the vanishing ideal of the variety ofI are equal, i.e.√
I = I(V (I)).

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 34

The reader is referred to[Coxet al., 1996, Hilbert’s Strong Nullstellensatz, p. 174] for proof
and further details.

Hilbert’s Strong Nullstellensatz (Theorem 3.23) relates ideals, varieties, and their radicals.
The following theorem provides us with more information about their relationship. The reader
is referred to[Cox et al., 1996, Ideal-Variety Correspondence Theorem,p. 175] for proof and
further details.

Theorem 3.24 (Ideal-Variety Correspondence).Let k be an algebraically closed field, then
the maps

affine varieties
I−→ radical ideals

and
radical ideals

V−→ affine varieties

are inclusion-reversing bijections which are inverses of each other.

The theorem allows us to transform radical ideals to varieties and back without losing infor-
mation. We shall frequently make use of this relationship.

Example 3.25 (Ideal-Variety Correspondence).Let k = C, and letI = 〈x2(x− 1) 〉, let
J = 〈x(x− 1) 〉, and letK = 〈x 〉 be ideals ofk[x]. ThenI ⊆ J ⊆ K, and it follows from the
first part of Theorem 3.24 thatV (I) ⊇ V (J) ⊇ V (K). The following demonstrates that this is,
indeed, true.

V (I) = { 0, 1 }
⊇ { 0, 1 }
= V (J)

= { 0, 1 }
⊇ { 0 }
= V (K) .

Note thatI is not radical, whereasJ andK are. SinceJ ⊂ K, it follows from the second part of
Theorem 3.24 thatV (J) ⊃ V (K). The following demonstrates that this is, indeed, true.

V (J) = { 0, 1 }
⊃ { 0 }
= V (K) .

Intersection of Ideals

Another interesting relationship is that between the intersection of ideals and the union of their
varieties. The following theorem is proved in[Coxet al., 1996, Chapter 4.3, Theorem 15].

Theorem 3.26 (Intersection versus Union).If I andJ ideals ofk[X] then

V (I ∩ J) = V (I) ∪ V (J) .

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 35

This equivalence also will turn out to be very convenient. Provided we have an algorithm for
ideal intersection, we can compute a generating system of an idealI ∩ J whose variety is the
union of the varieties of two other idealsI andJ . The relationship will allow us—as we shall
see in the following chapter—to “translate” a constraint to an ideal. As will be demonstrated in
Section 3.4.5, a simple algorithm to intersect two ideals does, indeed, exist.

Example 3.27 (Intersection of Ideals versus Union of Varieties).Let I = 〈x− 1 〉 andJ =
〈x− 2 〉 then

V (I ∩ J) = V (〈 (x− 1)(x− 2) 〉)
= { 1, 2 }
= { 1 } ∪ { 2 }
= V (〈x− 1 〉) ∪ V (〈x− 2 〉)
= V (I) ∪ V (J) .

The first equality is justified because the intersection ofI andJ contains all polynomials which
are inI (i.e. are a multiple ofx− 1) and also inJ (i.e. are a multiple ofx− 2).

In general, it can also be shown that ifI andJ are ideals thenV (I ∩ J) = V (I · J), where
I · J is theproductof I andJ , i.e.I · J = { ij : (i, j) ∈ I×J }. Note that even ifI andJ are
radical this does not always mean thatI ∩ J = I · J . For example,〈x 〉 ∩ 〈x 〉 = 〈x 〉 6= 〈x2 〉 =
〈x 〉 · 〈x 〉. If I andJ are radical ideals thenI · J ⊂ I ∩ J . The reader is referred to[Cox et al.,
1996, Chapter 4.3] for further information.

Sums of Ideals

The following theorem is proved in[Coxet al., 1996, Chapter 4.3, Theorem 4].

Theorem 3.28 (Sum versus Intersection).If I andJ ideals ofk[X] then

V (I + J) = V (I) ∩ V (J) .

As already indicated we shall demonstrate further on in this thesis how to convert a constraint
to an ideal. The relationship between the sum of two ideals and the intersection of their varieties
will allow us to construct an ideal whose variety is equal to the solutions of a constraint network.

Notice that from an intuitive point of view it is pretty easy to see that Theorem 3.28 must,
indeed, hold. The common zeros of two sets of polynomials are equal to the common zeros of
the union of those sets, which in their turn are equal to the intersection of the common zeros of
those two sets.

Example 3.29 (Sum of Ideals versus Intersection of Varieties (1)).Let k = C, let I =
〈x(x− 1) 〉, and letJ = 〈x(x− 2) 〉 be ideals ofk[x], then V = V (I) = { 0, 1 }, and

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 36

W = V (J) = { 0, 2 }. According to Theorem 3.28V (I + J) = V ∩ W = { 0 }. The fol-
lowing demonstrates that this does, indeed, hold.

V (I + J) = V (〈x(x− 1) 〉+ 〈x(x− 2) 〉)
= V (〈x(x− 1) 〉+ 〈x(x− 1)− x(x− 2) 〉)
= V (〈x(x− 1) 〉+ 〈x 〉)
= V (〈x 〉)
= { 0 } .

Example 3.30 (Sum of Ideals versus Intersection of Varieties (2)).Let I = 〈x(x− 1), y − x 〉 ⊂
k[x, y] andJ = 〈x(x+ 1), y + x 〉 ⊂ k[x, y]. It is not difficult to see thatV (I) = { (0, 0), (1, 1) }
and thatV (J) = { (0, 0), (−1, 1) }. Furthermore,

V (I + J) = V (〈x(x− 1), y − x, x(x+ 1), y + x 〉)

= V (〈x(x− 1), (y − x)/2 + (y + x)/2, x(x+ 1), y + x 〉)

= V (〈x(x− 1), y, x(x+ 1), y + x 〉)

= V (〈x(x− 1), y, x(x+ 1), x 〉)

= V (〈x, y 〉)

= { (0, 0) }

= { (0, 0), (1, 1) } ∩ { (0, 0), (−1, 1) }

= V (I) ∩ V (J) .

Distributive Property

In this section we shall prove a proposition about zero-dimensional radical ideals which will be
needed in the following chapter. Before we prove the proposition is true, we present the following
lemma, which is a special case of Proposition 3.22.

Corollary 3.31. Let I andJ be zero-dimensional radical ideals ofk[X], then eitherI + J is
inconsistent or is a zero-dimensional ideal ofk[X].

Proof. Trivial.

Proposition 3.32 (Distributive Property). If I, J andK are zero-dimensional radical ideals of
k[X] then

I ∩ (J +K) = (I ∩ J) + (I ∩K).

Proof. AssumeJ + K is inconsistent. By Hilberbert’s Weak Nullstellensatz (Theorem 3.7),

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 37

J +K = 〈 1 〉. Therefore,

I ∩ (J +K) = I ∩ 〈 1 〉
= I

= I · 〈 1 〉
= I · (J +K)

= I · J + I ·K
⊆ (I ∩ J) + (I ∩K).

The reverse inclusion also holds, becauseI ∩ (J + K) containsI ∩ J and containsI ∩K. By
virtue of it being an ideal,I ∩ (J +K) must therefore also contain(I ∩ J) + (I ∩K).

AssumeJ +K is consistent. The ideal-variety correspondence (Theorem 3.24) allows us to
derive the following equivalence betweenV (I ∩ (J +K)) andV ((I ∩ J) + (I ∩K)).

V (I ∩ (J +K)) = V (I) ∪ V (J +K)

= V (I) ∪ (V (J) ∩ V (K))

= (V (I) ∪ V (J)) ∩ (V (I) ∪ V (K))

= V (I ∩ J) ∩ V (I ∩K)

= V ((I ∩ J) + (I ∩K)) .

The varieties of the idealsI ∩ (J + K) and (I ∩ J) + (I ∩ K) are equal. We shall use the
ideal-variety correspondence (Theorem 3.24) to prove that the two ideals are equal by showing
that they are radical.

By Corollay 3.31,J + K is radical.I is also radical and it follows from Theorem 3.21 that
I ∩ (J + K) is radical. By Hilbert’s Weak Nullstellensatz,(I ∩ J) + (I ∩ K) is consistent
becauseI ∩ (J+K) is consistent and the varieties of the two ideals are equal. By Theorem 3.21,
I ∩ J andI ∩ K are zero-dimensional and radical. We conclude the proof by observing that
(I ∩ J) + (I ∩K) is radical by Corollay 3.31.

Note that in general the distributive property may not always hold if the ideals are not radical
or zero-dimensional. For example, letI = 〈 y + x 〉, let J = 〈x2 〉, and letK = 〈 y2 〉. Then

I ∩ J =
〈

(y + x)x2
〉

;

I ∩K =
〈

(y + x)y2
〉

;

(I ∩ J) + (I ∩K) =
〈

(y + x)x2, (y + x)y2
〉

;

I ∩ (J +K) = 〈 y + x 〉 ∩ (
〈
y2
〉

+
〈
x2
〉
)

= 〈 y + x 〉 ∩ (
〈
y2 − x2

〉
+
〈
x2
〉
)

= 〈 y + x 〉 ∩ (〈 (y + x)(y − x) 〉+
〈
x2
〉
),

and it is not difficult to see thatI∩(J+K) contains〈 (y + x)(y − x) 〉, whereas(I∩J)+(I∩K)
does not.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 38

3.3 Gröbner Bases

3.3.1 Introduction

In this section we shall studyterm ordersandGröbner bases. Like the previous sections our
treatment will be informal.

Gröbner bases are finite generating systems of polynomial ideals with the additional property
that theleading termsof their members with respect to aterm ordercharacterise the leading
terms of the members of the ideal with respect to the same term order. It will turn out that this
allows for the decision and solution of many problems in ideal theory.

3.3.2 Term Orders

Term orders are to Gröbner bases what variable orderings are to the Gaussian Elimination Al-
gorithm. They are a generalisation of variable orders (orders on linear terms) in the sense that
they are also orders on non-linear terms. Term orders preserve the ordering which is induced by
division, thereby allowing for a generalisation of quotient and remainder (with respect to a term
order). In our presentation we shall not need quotients and remainders with respect to term or-
ders. Instead, we shall rely on the notion ofnormal formof a polynomial with respect to a finite
set of non-zero polynomials and a term order. The remainder of this section is an introduction to
term orders and normal forms. The reader is referred to[Becker and Weispfenning, 1993] and
[Coxet al., 1996] for further information about division with respect to a term order.

Let X = {x1, . . . , xn } be a non-empty set of variables. The set containing all power-
products of the members ofX will be denotedTX . Formally,

TX = {xα1
1 × · · · × xαnn : (α1, . . . , αn) ∈ Nn } .

Definition 3.33 (Term Order). LetX be a non-empty set of variables. Aterm order≺ onTX is
a total order onTX with the additional property that1 is the smallest member ofTX with respect
to≺ and that for everyu, v ∈ TX it holds that wheneveru ≺ v it must be true thattu ≺ tv for
everyt ∈ TX .

Example 3.34 (Lexicographical Term Order). LetX = {u, v } and let≺ be the order onTX
such thatuα1vβ1 ≺ uα2vβ2 if either (α1 < α2) or (α1 = α2 ∧ β1 < β2). Then≺ is a term order
onTX . For obvious reasons it is called thelexicographicalterm order such thatu ≺ v.

For example, let≺ be the term order such that1 ≺ x ≺ x2 ≺ · · · ≺ y ≺ xy ≺ x2y ≺ · · · . It
is the lexicographical term order such thatx precedesy.

Example 3.35 (Total Degree Order).LetX = {u, v } and let≺ be the order onTX such that
uα1vβ1 ≺ uα2vβ2 if either (α1 + β1 < α2 + β2) or (α1 + β1 = α2 + β2 ∧ α1 < α2). Then≺ is a
term order onTX . It is called thetotal degreeorder such thatu ≺ v.

For example, let≺ be the term order such that1 ≺ x ≺ y ≺ x2 ≺ xy ≺ y2 ≺ x3 ≺ · · · . It is
the total degree order such thatx precedesy.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 39

A monomialis the product of a non-zero constant and a term. The most significant term of
a non-zero polynomial with respect to a term order is called theleading termof that polynomial
with respect to that term order. The leading term of a non-zero polynomialp with respect to
the term order≺ will be denotedlt≺(p). The leading monomialof a non-zero polynomial with
respect to a term order is the monomial of that polynomial whose term is the leading term of that
polynomial with respect to that term order. The leading monomial ofp with respect to≺ will
be denotedlm≺(p). The leading coefficientof a polynomialp with respect to a term order≺ is
equal tolm≺(p)/ lt≺(p). The leading coefficient ofp with respect to≺ will be denotedlc≺(p).

Let · | · be the relation defined on terms such thatu | v if u dividesv. Furthermore, let· - ·
be the relation defined on terms suchu - v if u does not dividev.

The following defines a normal form of a polynomial with respect to a set of polynomials
and a term order.

Definition 3.36 (Normal Form). LetX be a finite set of variables, let≺ be a term order onTX ,
let F be a finite subset ofk[X] \ { 0 }, and letp ∈ k[X] a polynomial. Thenq ∈ k[X] is called a
normal formof p with respect toF and≺ if q− p ∈ 〈F 〉 and for allf ∈ F none of the terms of
q are divided bylt≺(f).

It is important to notice that normal forms are not unique. For example, let≺ be the lexi-
cographical term order such thatx ≺ y, let F = { y2 − x, y − x }, and letp = y2, then both
x = p− (y2 − x) andx2 = p− (y + x)(y − x) are normal forms ofp with respect toF and≺.

3.3.3 Definition of Gröbner Bases

In this section we shall define the notion of aGröbner basisand that of areduced Gröbner basis
of an ideal with respect to a term order.

Definition 3.37 (Gröbner Basis).Let k be a field,X 6= ∅ a set of variables,I ⊆ k[X] an ideal
and≺ a term order. A setG ⊆ I \ { 0 } is called aGröbner basisof I with respect to≺ if the
cardinality ofG is finite and if

(∀f ∈ I \ { 0 })(∃g ∈ G)(lt≺(g) | lt≺(f)).

Let ≺ be a term order and letG ⊂ k[X] be a Gröbner basis of some ideal with respect to
≺. Finally, letf ∈ k[X] be any polynomial. There exists an algorithm for the computation of a
normal formp of f with respect toG and≺. It can be shown thatp is unique up to multiplication
by a constant ink. The reader is referred to[Becker and Weispfenning, 1993, Chapter 5] for
further details. From now on we shall writenf≺(G, f) for “the” normal form off with respect to
G and≺ and we shall assume that it is monic or zero.

The set containing the terms of a polynomialf is denotedterms(f).

Definition 3.38 (Reduced Gröbner Basis).Let k be a field, letX 6= ∅ be a set of variables, let
I ⊆ k[X] be an ideal and let≺ be a term order. A Gröbner basisG ⊆ I \ { 0 } of I with respect
to ≺ is called areduced Gröbner basisof I with respect to≺ if each of its members is monic
and

(∀g ∈ G)(∀f ∈ G \ { g })(∀t ∈ terms(f))(lt≺(g) - t).

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 40

Let ≺ be a term order and letF be a finite generating system of an idealI. GivenF and
≺, the Buchberger Algorithmcan be used to compute a Gröbner basisG of I with respect to
≺. GivenG and≺ it is a straightforward exercise to compute a reduced Gröbner basis ofI
with respect to≺. The reader is referred to[Becker and Weispfenning, 1993, Chapter 5] for
further details. For efficient implementations of the Buchberger algorithm the reader may wish
to consult[Becker and Weispfenning, 1993, Chapter 5.5] and[Giovini et al., 1991].

3.4 Gröbner Basis Algorithms

3.4.1 Introduction

In this section we shall study Gröbner basis algorithms to solve each of the following problems:

ideal membership problem Given a finite generating system of an idealI ⊆ k[X] and a poly-
nomialp ∈ k[X], decide ifp ∈ I;

consistency problemGiven a finite generating system of idealI ⊆ k[X], decide ifI is consis-
tent;

variable elimination Given a finite generating system of idealI ⊆ k[X] and a subsetW of X,
compute a generating system ofI ∩ k[W];

ideal intersection Given finite generating systems of finitely many ideals, compute a generating
system of their intersection;

zero-dimensionality decision problemGiven a finite generating system of an idealI of k[X],
decide ifI is zero-dimensional;

cardinality Given a finite generating system of zero-dimensional idealI ⊂ k[X], compute the
cardinality of the variety ofI;

extension Given a finite generating system of a zero-dimensional radical idealI ⊂ k[x1, . . . , xn],
compute a Gröbner basis which contains generating systems of each of the elimination ide-
als I ∩ k[x1, . . . , xm], for 1 ≤ m ≤ n. It will be shown that such Gröbner bases allow
for the extension of partial solutions of the formx1 = v1, . . . , xm−1 = vm−1 to partial
solutions of the formx1 = v1, . . . ,xm = vm, form = 2, . . . ,n.

We shall consider these problems and the Gröbner basis algorithms to solve them in the following
sections.

3.4.2 Ideal Membership

In this section we shall study theideal membership problem, i.e. we shall study the problem of
deciding whether a given polynomialf ∈ k[X] is a member of a given idealI ⊆ k[X].

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 41

Theorem 3.39 (Ideal Membership Problem).Let≺ be a term order, letG be a Gröbner basis
of I with respect to≺, and letf ∈ k[X]. Thenf ∈ I if and only ifnf≺(G, f) = 0.

The reader is referred to[Becker and Weispfenning, 1993, Theorem 5.55] for proof and
further details.

Note that Theorem 3.39 provides an algorithm for the ideal membership problem. To decide
if f is in the ideal generated byF , select any term order≺, compute a Gröbner basisG of 〈F 〉
with respect to≺ and compute the normal form off with respect to≺ andG. Thenf is in the
ideal generated byF if and only if the normal form is zero.

3.4.3 Consistency of Ideals

In this section we shall briefly discuss an algorithm to decide if ideals are consistent.
Remember that an ideal is called consistent if it does not contain1 and inconsistent otherwise.

Theconsistency problemto decide if the idealI is consistent is nothing but the ideal membership
problemf ∈ I for the special casef = 1. If ≺ is a term order, andG is a Gröbner basis ofI
with respect to≺ thenI is consistent if and only ifnf≺(G, 1) = 0.

Reduced Gröbner bases of inconsistent ideals are all equal to{ 1 }. Reduced Gröbner bases
of consistent ideals do not contain1. If the reduced Gröbner basis ofI is available this makes it
even easier to decide the consistency problem ofI.

3.4.4 Elimination Ideals

In this section we shall study the problem of how to compute generating systems of elimination
ideals.

LetX = {x1, . . . , xn } be a non-empty set of variables, letI ⊆ k[X] be an ideal, and let≺
be the lexicographical term order such thatxi ≺ xj ⇐⇒ i < j, for 1 ≤ i, j ≤ n. Furthermore,
letG be a Gröbner basis ofI with respect to≺. Finally, letm be any positive integer less than
or equal ton and letf be any non-zero member ofI ∩ k[x1, . . . , xm]. By definition,G contains
a member whose leading term with respect to≺ divides the leading term off with respect to≺.
What is more, ifg ∈ G and if lt≺(g) | lt≺(f) then each of the terms ing − lm≺(g) are smaller
(with respect to≺) than lt≺(g) and it follows thatg ∈ I ∩ k[x1, . . . , xm]. Clearly,G contains
Gröbner bases of each of the elimination idealsI ∩ k[x1, . . . , xm], for 1 ≤ m ≤ n.

Variable elimination has become a straightforward exercise. To eliminate the variablesW ⊂
X from I compute a Gröbner basis ofI with respect to any lexicographical term order≺ which
has the property that the variables inX \W are the least significant ones. Next eliminate from
the Gröbner basis the non-constant polynomials which are ink[X] but not ink[X \ W]. The
resulting set is a Gröbner basis ofI ∩ k[X \W] with respect to≺.

3.4.5 Ideal Intersection

In this section we shall provide an algorithm to compute the intersection of ideals. The reader is
referred to[Becker and Weispfenning, 1993, Corollary 6.20] for a proof.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 42

The following theorem describes a relationship between a set of ideals and the intersection
of its members.

Theorem 3.40 (Intersection of Ideals).Let X 6= ∅ be a finite set of variables, and letI =
{ I1, . . . , In } be a non-empty set of ideals ofk[X]. Furthermore, letY = { y1, . . . , yn } be a set
of variables such thatY andX are disjoint. Then⋂

Ii∈I

Ii = k[X] ∩ S,

where

S =

〈
1−

n∑
i=1

yi

〉
+

n∑
i=1

yiIi.

With the tools presented so far, this makes it a trivial exercise to compute a generating system
of the intersection of a set of ideals. First compute a generating system ofS and then use the
algorithm sketched in Section 3.4.4 to eliminate fromS the variables that are inY .

Example 3.41 (Ideal Intersection).Let V = { (1, 1), (4, 2) } ⊂ k2. Note thatV can also be
interpreted as a constraint on two variables, sayx andy. In this example we shall show how to
construct a generating system of the vanishing ideal ofV in k[x, y].

The point(1, 1) corresponds to the simultaneous “assignment”x = 1 andy = 1, i.e. it
corresponds to the maximal ideal〈x− 1, y − 1 〉. Similarly, (4, 2) corresponds to the maximal
〈x− 4, y − 2 〉. Therefore,

V = { (1, 1), (4, 2) }
= { (1, 1) } ∪ { (4, 2) }
= V (〈x− 1, y − 1 〉) ∪ V (〈x− 4, y − 2 〉)
= V (〈x− 1, y − 1 〉 ∩ 〈x− 4, y − 2 〉)
= V (〈F 〉) ,

whereF can be computed using Theorem 3.40. The application of Theorem 3.40 and variable
elimination with respect to a lexicographical term order≺ such thatx andy are the least signifi-
cant variables and such thatx ≺ y leads to:

F =
{
x2 − 5x+ 4, 3y − x− 2

}
.

It is left as an exercise to the reader to verify thatV = V (〈F 〉).

3.4.6 Zero-Dimensional Ideals

In this section we shall present the notion ofreduced termsof an ideal with respect to a term
order, and theorems about and algorithms for zero-dimensional ideals. We shall first present the
Triangular Form Theorem. It relates the cardinality of the variety of a zero-dimensional ideal

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 43

and the leading terms of its Gröbner bases. Next, we shall define the notion of thereduced terms
of an ideal with respect to a term order. Finally, we shall present the Counting Theorem which
provides an algorithm to compute the cardinality of the variety of a zero-dimensional radical
ideal by inspecting the leading terms of a Gröbner basis of that ideal.

The following theorem provides an algorithm for the detection of zero-dimensional ideals.

Theorem 3.42 (Triangular Form). LetX = {x1, . . . , xn }, let I be a proper ideal ofk[X], and
let≺ be any lexicographical term order on the variables inX. ThenI is zero-dimensional if and
only if for eachxi ∈ X every Gröbner basis ofI with respect to≺ contains a polynomial whose
leading term with respect to≺ is of the formxαii for some positive integerαi.

The reader is referred to[Becker and Weispfenning, 1993, Theorem 6.54(i) and(iv)] for
proof and further details.

Example 3.43 (Triangular Form). LetX = {x0, x1, x2 }, and letI ⊂ k[X] be the ideal gener-
ated byG, where

G = {x0, x1 + x0, x2 + x1 + x0 } .

G is a Gröbner basis with respect to the lexicographical term order≺ wherex0 ≺ x1 ≺ x2. It is
not difficult to see thatI is zero-dimensional and thatV (G) = { (0, 0, 0) }. The leading terms
of the members of the Gröbner basis with respect to≺ are given byx2, x1 andx0. For every
memberxi of X the basis contains a polynomial whose leading terms with respect to≺ is of the
form xi, i.e.x1

i . By Theorem 3.42I is zero-dimensional.

Definition 3.44 (Initial Ideal). Let≺ be a term order, and letI be an ideal ofk[X]. The initial
ideal of I with respect to≺ is the ideal which is generated by the leading terms with respect
to ≺ of the non-zero members ofI. The initial ideal ofI with respect to≺ is denotedin≺(I).
Formally,

in≺(I) = 〈 { lt≺(f) : f ∈ I \ { 0 } } 〉 .

Definition 3.45 (Reduced Terms).Let I ⊆ k[X] be an ideal and≺ a term order. Thereduced
termsof I with respect to≺ are the terms inTX which are not inin≺(I).

It follows from the definition of a Gröbner basis that the reduced terms ofI with respect to
≺ are the monomials ofk[X] that cannot be divided by any of the leading terms (with respect to
≺) of the members ofG.

The following theorem provides an algorithm for computing the cardinality of the variety of
a zero-dimensional radical ideal.

Theorem 3.46 (Counting).Let k be a any field, letK be the algebraic closure ofk, let≺ be a
term order, and letI be a zero-dimensional ideal ofk[x1, . . . , xn]. The number of common zeros
of the members ofI in Kn is less than or equal to the number reduced terms ofI with respect to
≺. If k is perfect andI is radical then equality holds.

The reader is referred to[Becker and Weispfenning, 1993, Theorem 8.32] for proof and
further information.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 44

Example 3.47 (Counting).Let X = {x, y }, and let≺ be any term order such thatx ≺ y.
Furthermore, let

g1 = x2 − x;

g2 = y − x;

G = { g1, g2 } ;

I = 〈G 〉 .

G is the reduced Gröbner basis ofI with respect to≺, G does not contain1, and thereforeI is
proper. Note thatI contains the square-free univariate polynomialx(x − 1) = x2 − x. I also
contains the polynomial

g1 + g2(y + x− 1) = x2 − x+ (y − x)(y + x− 1)

= x2 − x+ y2 − x2 − y + x

= y2 − y

= y(y − 1),

which is also square-free. It follows from Lemma 3.20 thatI is zero-dimensional and radical.
Therefore, Theorem 3.46 can be applied. The reduced terms ofI with respect to≺ can be read
off from the Gröbner basisG. They are the same as the terms inTX which cannot be divided by
any of the leading terms of the members ofG with respect to≺. They are1 andx. It follows
from Theorem 3.46 that the variety ofI contains two members. Indeed, the zeros ofx in g1 are
given by0 and1 and for each zero ofx in g1 there is exactly one zero fory in g2. If x = 0 then
y = 0 and ifx = 1 theny = 1. The common zeros ofI are(0, 0) and(1, 1). There is one zero
for every reduced term ofI with respect to≺.

3.4.7 Extension of Solutions

In this section we shall study a proposition which will be used in Chapter 4. The proposi-
tion provides a sufficient condition for the extension of partial solutions. Before we present the
proposition we recall two theorems which were presented earlier in this chapter.

Remember that Theorem 3.14 (Extension Theorem) provides sufficient conditions for the
successful extension of solutions which vanish in elimination ideals to solutions which vanish
everywhere. Theorem 3.42 (Triangular Form Theorem) provides an algorithm to decide if proper
ideals are zero-dimensional. For every idealI ⊂ k[X] and every lexicographical term order≺
the Triangular Form Theorem states thatI is zero-dimensional if and only if, for everyxi ∈ X,
the reduced Gröbner basis ofI with respect to≺ contains a polynomial whose leading term with
respect to≺ is equal toxαii , for some positive integerαi.

We can combine these theorems for the following proposition.

CHAPTER 3. VARIETIES, IDEALS AND GRÖBNER BASES 45

Proposition 3.48 (Extension).If I is a proper zero-dimensional ideal ofk[x1, . . . , xn] then any
common zerox1 = v1, . . . ,xm−1 = vm−1 of the members ofI ∩ k[x1, . . . , xm−1] can be extended
to a common zerox1 = v1, . . . ,xm = vm of the members ofI ∩ k[x1, . . . , xm], for 1 ≤ m ≤ n.

Proof. Let≺ be the lexicographical term order such thatxi ≺ xj ⇐⇒ i < j. By the Triangular
Form Theorem, for every1 ≤ i ≤ n, the reduced Gröbner basisG of I with respect to≺
contains a polynomial whose leading term with respect to≺ is of the formxαii , for someαi > 0.
The leading coefficients of these polynomials cannot vanish and by the Extension Theorem the
extension of partial solutions inI ∩ k[x1, . . . , xm−1] to partial solutions inI ∩ k[x1, . . . , xm] is
guaranteed, for1 < m ≤ n.

Chapter 4

CSPs in Solved Form

4.1 Introduction

In this chapter we shall study a new technique to transform anyCSPwith extensional constraints
to aCSPwhich is indirectionally solved formwith respect to a certain variable ordering and to
a CSPwhich is inglobally solved form. Both kinds ofCSPs guarantee backtrack-free search and
guarantee that all solutions can be found without encountering “dead-ends.”

The process of transforming aCSPto aCSPwhich is in directionally solved form consists of
three steps. The algorithm for the computation ofCSPs in globally solved form is almost similar,
except for the last step. The three steps rely heavily on the relationship between constraints,
varieties, ideals, and Gröbner bases. First, theCSP is transformed to a generating system of a
polynomial ideal. Next, the system is transformed to the reduced Gröbner basis of its ideal with
respect to a lexicographical term order. Finally, the reduced Gröbner basis is transformed to a
CSP.

The remainder of this chapter is as follows. In Section 4.2 we shall define the notions of a
CSPin directionallyandglobally solved form, describe the properties of suchCSPs, and discuss
the related literature. This is followed by Section 4.3 where we shall recall three theorems from
the previous chapter which shall be required in the remainder of this chapter. In Section 4.4
we shall discuss the relationship between constraints, varieties and ideals. We shall present the
algorithm for the computation ofCSPs in directionally solved form and shall present a proof for
the correctness of the algorithm in Section 4.5. Examples of the application of the algorithm to
some problems will be presented in Section 4.6. We shall present our concluding remarks and
provide suggestions for future work in Section 4.7.

4.2 Basic Definitions

In this section we shall define the notion of aCSPin directionally solved form and that of aCSP
in globally solved form, discuss the relevant literature, and mention possible applications.

46

CHAPTER 4. CSPS IN SOLVED FORM 47

Definition 4.1 (CSP in Directionally Solved Form). Let X = {x1, . . . , xn } be a non-empty
set of variables, letC = (X,D,C) be aCSP, and let≺ be an ordering on the variables inX
such thatxi ≺ xj ⇐⇒ i < j. ThenC is in directionally solved form with respect to≺ if either:

• C is unsatisfiable and∅ = C{x1 } ∈ C; or

• C is satisfiable, there is a constraint of the form∅ 6= C{x1 } ∈ C, and for all integersi,
1 < i ≤ n, if (v1, . . . , vi−1) satisfiesC then there exists a membervi ∈ D(xi) such that
(v1, . . . , vi) also satisfiesC.

A CSPin directionally solved form can be solved efficiently in the sense that no backtracking
is required in the process of finding one of its solutions or deciding that no such solution exists.
All its solutions can be found without encountering dead-ends by extending partial solutions.
If the CSP is unsatisfiable then this can be found out easily by inspecting the unary constraint
(node-consistency) on the least significant variable with respect to≺.

Example 4.2 (CSP in Directionally Solved Form). Let X = {x0, x1, x2, x3 }, let ≺ be the
order such thatxi ≺ xj ⇐⇒ i < j, and let(X,D,C) be theCSP, where

C =
{
C{x0 }, C{x0,x1 }, C{x1,x2 }, C{x1,x2,x3 }

}
;

D(x0) = { 0, 1 } ;

D(x1) = { 0, 1 } ;

D(x2) = { 0, 1 } ;

D(x3) = { 0, 1 } ;

C{x0 } = { 0, 1 } ;

C{x0,x1 } = { (0, 0), (0, 1), (1, 1) } ;

C{x1,x2 } = { (0, 0), (1, 1) } ;

C{x1,x2,x3 } = { (0, 0, 0), (1, 1, 1) } .

TheCSPis in directionally solved form with respect to≺. The reasons for this are as follows:

1. The smallest variable inX with respect to≺ is x0. The constraintC{x0 } is non-empty.

2. Every tuple(v0, . . . , vm−1) which does not violate any constraint can be extended to a
tuple (v0, . . . , vm) which does not violate any constraint, for1 ≤ m ≤ 3. For example,
none of the members inC{x0 } violate any constraint. Every member ofC{x0 } can be
extended to an(x0, x1)-tuple which does not violate any constraint. The set containing
these tuples isC{x0,x1 }. Every tuple inC{x0,x1 } can also be extended to an(x0, x1, x2)-tu-
ple which does not violate any constraint. The set containing all these tuples is given by
{ (0, 0, 0), (0, 1, 1), (1, 1, 1) }. Each member of this set can in its turn be extended to
an (x0, x1, x2, x3)-tuple which does not violate any constraint. The set containing these
tuples is given by{ (0, 0, 0, 0), (0, 1, 1, 1), (1, 1, 1, 1) }. The members of this set are the
solutions of(X,D,C).

CHAPTER 4. CSPS IN SOLVED FORM 48

The purpose of a backtrack-free search is to compute a single solution without encountering
a dead-end or to decide that no such solution exists. Freuder provides sufficient conditions and
an algorithm for the case where the constraint-graph of theCSP is a tree[Freuder, 1982]. He
generalises this for arbitrary binaryCSPs by relating the width of the constraint-graph to the level
of (i, j)-consistency of theCSP[Freuder, 1985].

As observed by Dechter and Pearl weaker properties may also ensure backtrack-free search
[Dechter and Pearl, 1988a]. They propose directional consistency methods for binaryCSPs.

Dechter and Van Beek seem to have been the first to pose and answer the question of how
to compute directionally solvedCSPs [Dechter and van Beek, 1995; 1997]. They present an
algorithm calledDRC (Directional-Relational-Consistency) which can transformanyCSPto an
equivalentCSPwhich is in directionally solved form. TheirCSPs are created by the repeated
addition of constraints and repeated restriction of constraints by removing those partial solutions
that cannot be extended. ACSP is in globally solved formif it is in directionally solved form
with respect to all variables orders. Dechter and Van Beek also present algorithmARC (Adap-
tive-Relational-Consistency) to computeCSPs in globally solved form[Dechter and van Beek,
1995].

Besides differences in the domain of computation—we have to translate to and from the
polynomial ring, whereas Dechter and Van Beek do not—the main difference is that Dechter and
van Beek repeatedly intersect, join, project, and add constraints, whereas we use a Gröbner basis
approach. Further on in this chapter we shall demonstrate that by changing one step in our
algorithm we can computeCSPs which are in globally solved form.

4.3 Related Mathematics

In this section we shall briefly recall three theorems from Chapter 3 upon which we shall heavily
rely in the remainder of this chapter. The first theorem is the Triangular Form Theorem (The-
orem 3.42). It provides an algorithm for the detection of zero-dimensional ideals. The second
theorem is the Counting Theorem (Theorem 3.46). It can be used to determine the cardinality
of the variety of a zero-dimensional radical ideal. The third theorem is theExtension Theorem
(Theorem 3.14). Given anelimination orderit provides a sufficient condition for the extension
of (partial) solutions for the firstn− 1 variables to (partial) solutions for the firstn variables.

4.3.1 Triangular Form Theorem

The Triangular Form Theorem (Theorem 3.42) provides a relationship between zero-dimensional
ideals and the leading terms of the members of a Gröbner basis with respect to a lexicographical
term order of that ideal. IfG is the Gröbner basis of some idealI ⊆ k[x1, . . . , xn] with respect
to a lexicographical term order≺ thenI is zero-dimensional if and only if for1 ≤ i ≤ n, G
contains a polynomial whose leading term with respect to≺ is of the formxαii , for someαi > 0.

CHAPTER 4. CSPS IN SOLVED FORM 49

4.3.2 Counting Theorem

The Counting Theorem (Theorem 3.46) relates the cardinality of the variety of a zero-dimen-
sional radical ideal and the reduced terms of the ideal with respect to a term order. If≺ is a term
order then the number of common zeros of the members of a zero-dimensional radical idealI of
k[X] is equal to the number of reduced terms ofI with respect to≺. This number is equal to the
number of terms inTX that cannot be divided by any of the leading terms with respect to≺ of
the members of the Gröbner basis ofI with respect to≺.

4.3.3 Extension Theorem

The Extension Theorem (Theorem 3.14) provides a sufficient condition to ensure the extension
of partial solutions. As a special case (Proposition 3.48) it guarantees that ifI is a proper zero-di-
mensional ideal ofk[x1, . . . , xn] then any common zero(v1, . . . , vm−1) of I ∩ k[x1, . . . , xm−1]
can be extended to a common zero(v1, . . . , vm) of I ∩ k[x1, . . . , xm], for 1 < m ≤ n.

4.4 Ideals, Varieties, and Constraints

This section uses the ideal-variety correspondence discussed in Section 3.2.7 to translate finite
constraints to varieties and polynomial ideals and vice versa. The theory to be presented allows
for the transformation of finiteCSPs to polynomial ideals and vice versa. The presentation is
of an informal nature. The reader is referred to[Cox et al., 1996, Chapter 4] for a more formal
presentation.1 As usual,k denotes the field of the complex numbers.

In the following, letX = {x1, . . . , xn } be a finite set of variables and(X,D,C) a finite
CSP. As usual we shall assume that the order on the variables is such thatxi precedesxj if and
only if i < j. Without loss of generality we shall assume that the domains of the variables inX
are subsets ofk.

It is recalled that a proper idealI of ringR is called amaximalideal ofR if I + J ∈ { I, R }
for every idealJ of R. Maximal ideals ofk[x1, . . . , xn] are of the form〈x1 − v1, . . . , xn − vn 〉,
for suitably chosenv1, . . . ,vn ∈ k. Their varieties are of the form{ (v1, . . . , vn) }, i.e. each such
ideal corresponds to a single point inkn. Note that maximal ideals ofk[X] are radical.

Let n be a positive integer, letX = {x1, . . . , xn }, letS be a non-empty set of variables, and
let CS be a non-empty constraint inC. Every(vi1 , . . . , vim) ∈ CS corresponds to some point
(vi1 , . . . , vim) of km and hence with the maximal (as well as radical) ideal

〈xi1 − vi1 , . . . , xim − vim 〉

of k[S]. CS can therefore be described as follows:

CS =
⋃

(vi1 ,...,vim)∈CS

V (〈xi1 − vi1 , . . . , xim − vim 〉) . (4.1)

1Note that[Coxet al., 1996, Chapter 4] does not cover constraints butdoescover the relationship between ideals
and varieties in great detail.

CHAPTER 4. CSPS IN SOLVED FORM 50

Equation (4.1) states thatCS is the union of finitely many varieties ofkm. The union of varieties
is again a variety. Therefore,CS is a variety ofkm. Remember that the union of the varieties of
ideals is equal to the variety of the intersection of those ideals (Theorem 3.26). LetR = k[X],
let ∅ ⊂ S ⊆ X, and letJ be an ideal ofk[S]. It is recalled thatJR ⊆ k[X] is theR-module of
idealJ . With these definitions, Equation (4.1) is tantamount to:

CS = V (I) ,

whereI ⊂ k[S] is given by:
I = (

⋂
v∈CS

I({ v }))R.

Note thatI is the intersection of radical ideals. By Theorem 3.21,I is radical.CS is non-empty,
and by Hilbert’s Weak Nullstellensatz (Theorem 3.7),I is consistent. SinceV (I) = CS, I is
zero-dimensional. LetVS ⊂ kn be the variety ofIR.

From now, for everyCS ∈ C, let VS denote the variety inkn which can be constructed from
the constraintCS as laid out in the previous paragraph, i.e. let

VS = V
(
∩(vi1 ,...,vim)∈CS 〈xi1 − vi1 , . . . , xim − vim 〉R

)
.

From now onVS will be called thevarietyof the constraintCS. The setS ⊂ kn of values which
satisfy theCSPthat we started with is equal to the intersection of the varieties of the constraints
in C:

S =
⋂
CS∈C

VS. (4.2)

It is recalled from Section 3.2.7 that the variety of the sum of ideals is equal to the intersection
of the varieties of these ideals. Therefore, Equation (4.2) is equivalent to

S = V

(∑
CS∈C

I(VS)

)
. (4.3)

LetJ = I(S) ⊆ k[X]. It is recalled from Chapter 2 that without loss of generality we can assume
thatX = ∪CS∈CS. By Proposition 3.22,J is inconsistent or zero-dimensional and radical.

Example 4.3 (Constraint/Variety/Ideal Relationship). LetX = {x, y }, letD(x) = C{x } =
{−2,−1, 0, 1 }, let D(y) = C{ y } = { 1, 2, 3, 4 }, let C{x,y } = { (1, 1), (−2, 4) }, and let
C =

{
C{x }, C{ y }, C{x,y }

}
. Finally, letC = (X,D,C) be aCSP. The constraintC{x } cor-

responds to the varietyV{x } = {−2,−1, 0, 1 }×k, i.e. it is the set of(x, y)-tuples where
x ∈ {−2,−1, 0, 1 } andy ∈ k. It follows directly from the relationship between unions of
varieties and the variety of the intersection of their ideals that:

C{x } = {−2,−1, 0, 1 }
= V (〈x+ 2 〉) ∪ V (〈x+ 1 〉) ∪ V (〈x 〉) ∪ V (〈x− 1 〉)
= V (〈x+ 2 〉 ∩ 〈x+ 1 〉 ∩ 〈x 〉 ∩ 〈x− 1 〉)
= V (〈 (x+ 2)(x+ 1)(x− 0)(x− 1) 〉) .

CHAPTER 4. CSPS IN SOLVED FORM 51

Therefore,
V{x } = V

(〈
G{x }

〉
R

)
⊂ k2,

whereG{x } is given by

G{x } = { (x+ 2)(x+ 1)(x− 0)(x− 1) } .

Similarly,
V{ y } = V

(〈
G{ y }

〉
R

)
⊂ k2,

whereG{ y } is given by

G{ y } = { (y − 1)(y − 2)(y − 3)(y − 4) } .

Using the same technique we can compute a generating system for the ideal ofV{x,y } as
follows:

V{x,y } = { (1, 1), (−2, 4) }

= V (〈x− 1, y − 1 〉R ∩ 〈x+ 2, y − 4 〉R) .

We shall use the algorithms proposed in Section 3.4.4 and Section 3.4.5 to compute the intersec-
tion of 〈x− 1, y − 1 〉R and〈x+ 2, y − 4 〉R. The computation of the intersection proceeds as
follows. Letz1 andz2 be two new variables and let≺ be the lexicographical term order such that
x ≺ y ≺ z1 ≺ z2. It is recalled from Section 3.4.5 that ifI andJ are two ideals ofk[x, y] then

I ∩ J = k[x, y] ∩ (〈 1− z1 − z2 〉+ z1I + z2J).

The reduced Gröbner basis of

〈 1− z1 − z2 〉+ z1 〈x− 1, y − 1 〉+ z2 〈x+ 2, y − 4 〉

with respect to≺ is given by{
x2 + x− 2, y + x− 2, z1 − x/3− 2/3, z2 + x/3− 1/3

}
.

Therefore,
〈x− 1, y − 1 〉 ∩ 〈x− 2, y + 4 〉 =

〈
x2 + x− 2, y + x− 2

〉
.

This allows us to conclude that

V{x,y } = V
(〈
G{x,y }

〉
R

)
, (4.4)

whereG{x,y } is given by {
x2 + x− 2, y + x− 2

}
.

Equation (4.2) states that the solutionsS of C are given by the intersection of the varieties
of the constraints inC. This is equivalent to Equation (4.3) which states thatS is equal to the
variety of the sum of the ideals of the varieties of the constraints inC. Let J be the sum of the

CHAPTER 4. CSPS IN SOLVED FORM 52

ideals of the varieties of the constraints ofC, i.e.J =
∑

CS∈C I(VS). Furthermore, let≺ be the
lexicographical term order, such thatx ≺ y. The Gröbner basis ofJ with respect to≺ is given
by: {

x2 + x− 2, y + x− 2
}
.

It is the same as the generating system of the ideal ofV{x,y } from Equation (4.4). It follows
immediately thatS = C{x,y } and thatS are the solutions ofC.

Notice that theR-module of the ideal generated by the Gröbner basis contains
〈
G{x }

〉
R

,〈
G{ y }

〉
R

, and
〈
G{x,y }

〉
R

. It contains
〈
G{x }

〉
R

becausex2 + x− 2 = (x+ 2)(x− 1) divides
(x+ 2)(x+ 1)(x− 0)(x− 1). It contains

〈
G{ y }

〉
R

because〈
x2 + x− 2, y + x− 2

〉
=

〈
(2− y)2 + (2− y)− 2, y + x− 2

〉
=

〈
y2 − 5y + 4, y + x− 2

〉
= 〈 (y − 4)(y − 1), y + x− 2 〉

and because(y − 4)(y − 1) divides(y − 1)(y − 2)(y − 3)(y − 4). It is left as an exercise to the
reader to prove that

〈
G{x,y }

〉
R

is also contained by theR-module of the ideal which is generated
by the Gröbner basis.

In the previous paragraphs we have demonstrated how to translate aCSP into a generating
system of an ideal whose variety is equal to the solutions of theCSP. The following proposition
suggests an algorithm to get back from the generating system of an ideal to aCSPwhose solutions
are equal to the common zeros of the ideal.

Proposition 4.4. LetX = {x1, . . . , xn } be a finite set of variables such thatD(xi) has a finite
cardinality for eachxi ∈ X. LetF ⊂ k[X] be a finite set of polynomials. Then there exists an
algorithm to computeV (F) ∩×xi∈XD(xi).

Proof. First observe that(v1, . . . , vn) ∈ V (F) ∩ ×xi∈XD(xi) if and only if (v1, . . . , vn) ∈
×xi∈XD(xi) and each of the polynomials inF vanishes at(v1, . . . , vn). Next observe that
×xi∈XD(xi) has a finite cardinality. The problem of finding the algorithm has been reduced to
the enumeration of the members of×xi∈XD(xi) and a finite sequence of tests to see if these
members are the zeros of the members of a finite set of polynomials.

4.5 An Algorithm for CSPs in Directionally Solved Form

This section describes a transformation technique from anyCSPwith extensional constraints to
an equivalentCSPwhich is in directionally solved form with respect to some ordering on the
variables. The resultingCSPcorresponds to a reduced Gröbner basis with respect to a lexico-
graphical term order.

In the following, letn be a positive integer, letX = {x1, . . . , xn }, let (X,D,C) be a
finite CSP, let≺ be the lexicographical term order such thatx1 ≺ · · · ≺ xn, and letS denote
the solution set of theCSP. It is recalled from the previous section that every constraintCS

CHAPTER 4. CSPS IN SOLVED FORM 53

corresponds to some varietyVS ∈ kn. The set of solutionsS of theCSPcan be described as the
variety of the sum of the ideals of the varietiesVS, i.e.

S = V

(∑
CS∈C

I(VS)

)
.

The transformation is given by:

1. (a) For eachCS ∈ C compute a generating systemBS ⊂ k[x1, . . . , xn] for I(VS). After
this step we have:

S = V

(∑
CS∈C

〈BS 〉

)
.

(b) LetBX =
⋃
CS∈C BS. After this step we have:

S = V (〈BX 〉) .

2. (a) Compute the reduced Gröbner basisGX of 〈BX 〉 with respect to≺. We now have:

S = V (〈GX 〉) .

3. (a) For each polynomialg occurring inGX , let Sg denote its variables. Compute the
maximal (with respect to inclusion) subsetB′Sg of polynomials inGX the variables
of which are given bySg. After this step we have:

S = V

(∑
g∈GX

〈
B′Sg

〉)
.

(b) If GX = { 1 } then setC ′{x1 } = ∅ andC ′ to
{
C ′{x1 }

}
. Otherwise, for eachB′Sg

computed in the previous step compute:

C ′Sg = V
(
B′Sg

)
∩×xi∈SgD(xi),

where× is the Cartesian product operator. SetC ′ =
{
C ′Sg : g ∈ GX

}
. Finally, we

have

S = V

 ∑
C′Sg∈C

′

〈
C ′Sg

〉 .

The resultingCSPcorresponds toC ′.
The basesBS in step 1.a can be computed by intersecting ideals. The constraintsC ′Sg can

be computed by the algorithm suggested by Proposition 4.4. IfW 6= ∅ is a variety with a finite

CHAPTER 4. CSPS IN SOLVED FORM 54

cardinality, thenI = 〈W 〉 is a zero-dimensional radical ideal. Theorem 3.14 (Extension Theo-
rem) and Theorem 3.42 (Triangular Form Theorem) guarantee that extending non-empty partial
solutions of elimination ideals ofI must succeed. Similarly, the existence of a unary constraint
for the smallest variable is guaranteed. Therefore, theCSPis in directionally solved form with
respect to≺.

In this paragraph we shall describe how to computeCSPs which are in globally solved form.
The change is very simple. Replace Step (2) by: “Compute a universal Gröbner basis of〈BX 〉.”
Here, auniversal Gröbner basisof an idealI is a set which is a Gröbner basis ofI with respect
to any term order. The interested reader is referred to[Becker and Weispfenning, 1993, pp. 514–
515] for a short introduction to universal Gröbner bases and to[Mora and Robbiano, 1988] for
more detailed information.

Gröbner bases are difficult to compute. Given a generating systemF of a zero-dimensional
ideal it requires (worst case)O

(
dO(n)

)
time to compute the Gröbner basis of the ideal generated

by F , whered is the maximum total degree of a monomial inF andn the number of variables.
However, the following observations may be made:

• The techniques presented work in any ringk[X] if k is an algebraically closed field. Chang-
ing from an algebraically closed field to a finite field will not affect any of the results if
the field is sufficiently large to encode the members of the largest domain. The reasons
for this are two-fold. First, it can be shown that finite fields are perfect (See[Becker and
Weispfenning, 1993, Corollary 7.3]). Therefore, Lemma 3.20 remains valid. The second
reason is as follows. Our application of theorems (including the Counting Theorem) are
specialised for the case where the field of computation is algebraically closed. For the
case where the field of computation is finite our results still hold because all our ideals
are radical by construction and our operations (intersection and addition of ideals) do not
introduce zeros “outside” the field.

If p is a prime thenFp = Z/ 〈 p 〉 is a finite field containingp members[Cox et al., 1997,
page 359]. The method remains valid for the choice ofFp[X] if p is a small prime greater
than or equal to the maximum domain size. This will avoid large (intermediate) coefficients
and should speed up the computation significantly.

• ComputingCSPs in directionally solved form corresponds to finding all solutions of aCSP
which is also a difficult problem. As a matter of fact, the problem of finding all solutions
of theCSPhas a worst-case time-complexityO (dn), whered is the largest domain size.

It is not difficult to show that if the maximum domain size isd and if ideal intersection is
used to compute the generating systems of the varieties of the constraints then the maxi-
mum degree of the polynomials in the generating systems of the bases will bed as well.
This does not exclude the possibility that the boundsO

(
dO(n)

)
andO (dn) coincide for

the algorithm presented in this section.

• We could use Proposition 3.32 to compute the basesBS in step 1 (a) and 1 (b). This
should make it easier to compute the generating systems of the ideals of the constraints
and (perhaps) the Gröbner basis to be computed in Step 2.

CHAPTER 4. CSPS IN SOLVED FORM 55

For example, letC{x,y } = { (0, 0), (1, 0), (0, 1) }, letG1 = {x, y }, letG2 = {x− 1, 0 },
letG3 = {x, y − 1 }, and letI be the ideal ofC{x,y }. Then

I = 〈G1 〉 ∩ 〈G2 〉 ∩ 〈G3 〉

= 〈x, y 〉 ∩ 〈x− 1, y 〉 ∩ 〈x, y − 1 〉

= (〈x 〉+ 〈 y 〉) ∩ (〈x− 1 〉+ 〈 y 〉) ∩ (〈x 〉+ 〈 y − 1 〉)

= (〈x 〉 ∩ 〈x− 1 〉+ 〈 y 〉) ∩ (〈x 〉+ 〈 y − 1 〉)

= 〈x 〉 ∩ 〈x− 1 〉+ 〈x 〉 ∩ 〈 y 〉+ 〈 y 〉 ∩ 〈 y − 1 〉

= 〈x(x− 1) 〉+ 〈xy 〉+ 〈 y(y − 1) 〉

= 〈x(x− 1), xy, y(y − 1) 〉 .

LetG = {x(x− 1), xy, y(y − 1) }. G1, G2 andG3 are universal Gröbner bases and so is
G. The structure ofG is very similar to the structure ofG1, G2 andG3. Unfortunately,
in general the construction does not always lead to such nice bases and it can lead to sets
which are not Gröbner bases with respect to any term order.

Note that the construction is very similar to algorithms for the transformation of a formula
F1 in disjunctive normal form to a formulaF2 which is equivalent toF1 and is in con-
junctive normal form. For example, every member(vi, wj) of C{x,y } corresponds to a
(maximal) conjunction inF1 of the form:

Vi ∧Wj,

and vice versa. For each member of the generating system of the form:

(x− vi1) · · · (x− vim)(y − wj1) · · · (y − wjn)

there is a (maximal) disjunction of the form:

Vi1 ∨ · · · ∨ Vim ∨Wj1 ∨ · · · ∨Wjn

in F2 and vice versa.

The advantage of the construction is that it avoids the need for the algorithm for ideal
intersection as described in Section 3.4.5. Thus it eliminates the need to compute the lex-
icographical (read difficult) Gröbner bases which are required for the variable elimination
part of that intersection algorithm.

4.6 Example Applications

This section presents two examples whereCSPs are transformed to their equivalents in direction-
ally solved form using the technique described in the previous section.

CHAPTER 4. CSPS IN SOLVED FORM 56

Example 4.5 (Traffic Lights). The following constraints model a set of German traffic lights
and are based on[Hower, 1995].

C{ vi,pi,vi+1 mod 4,pi+1 mod 4 } = { (r, r, g, g), (ry, r, y, r), (g, g, r, r), (y, r, ry, r) } ;

C{ vi } = { r, g, ry, y } ;

C{ pi } = { r, g } ,

for i ∈ { 0, 1, 2, 3 }. The eight variables are given byp0, p1, p2, p3, v0, v1, v2, andv3. The
variablespi correspond to pedestrian lights. The remaining variables are vehicle lights. There
are four 4-ary constraintsC{ v0,p0,v1,p1 },C{ v1,p1,v2,p2 },C{ v2,p2,v3,p3 },C{ v3,p3,v0,p0 }, and eight unary
constraints corresponding to a domain of each of the variables. The macro-structure of theCSP
is depicted in Figure 4.1. Every variablex is represented by the circle containingx. The 4-ary

v0

v1

v2

v3p0

p1

p2

p3

Figure 4.1: Macro-structure of original CSP.

constraintCS is represented by the square which is connected to the variables inS by straight
lines. Assumeg = 0, ry = 1, y = 2, r = 3. Computing the generating systems for the constraints
with the algorithm as described in Section 3.4.5 results in the following systems:

B{ vi,pi,vi+1 mod 4,pi+1 mod 4 }
= { v4

i+1 mod 4 − 6v3
i+1 mod 4 + 11v2

i+1 mod 4 − 6vi+1 mod 4

, vi + vi+1 mod 4 − 3
, pi+1 mod 4 − v3

i+1 mod 4 + 6v2
i+1 mod 4 − 11vi+1 mod 4

, pi + v3
i+1 mod 4 − 3v2

i+1 mod 4 + 2vi+1 mod 4 − 6
}

B{ vi } = { v4
i − 6v3

i + 11v2
i − 6vi } ;

B{ pi } = { p2
i − 3pi } ,

for i ∈ { 0, 1, 2, 3 }.

CHAPTER 4. CSPS IN SOLVED FORM 57

The unionBX of these generating systems consists of 12 binomials and 8 monomials. Let
≺ be the lexicographical term order given byv3 ≺ v2 ≺ v1 ≺ v0 ≺ p3 ≺ p2 ≺ p1 ≺ p0. The
reduced Gröbner basisGX of 〈BX 〉 with respect to≺ is given by:

{ v4
3 − 6v3

3 + 11v2
3 − 6v3

, v2 + v3 − 3
, v1 − v3

, v0 + v3 − 3
, 2p3 − v3

3 + 6v2
3 − 11v3

, 2p2 + v3
3 − 3v2

3 + 2v3 − 6
, 2p1 − v3

3 + 6v2
3 − 11v3

, 2p0 + v3
3 − 3v2

3 + 2v3 − 6
}.

The reduced Gröbner basis has revealed a structure which was implicit in the originalCSP.
The basis does not equal{ 1 }. By Hilbert’s Weak Nullstellensatz (Theorem 3.7) theCSP is
satisfiable.

It is recalled that Proposition 3.22 ensures that the construction of the generating bases of
the constraints using ideal intersection results in generating systems of radical ideals. Propo-
sition 3.22 guarantees that the sum of zero-dimensional radical ideals is either inconsistent or
zero-dimensional and radical. It is because of the latter that the Counting Theorem (Theo-
rem 3.46) can be applied to count the number of common zeros of the members of the sum.
The theorem guarantees that the number of zeros of a zero-dimensional radical ideal is equal to
the number of reduced terms of its ideal, where the reduced terms are those monomials that are
not divisible by any of the leading terms of the reduced Gröbner basis of that ideal. The reduced
terms of〈GX 〉 with respect to≺ are given by{ 1, v3, v

2
3, v

3
3 }. There are four reduced terms and

Theorem 3.46 guarantees that there are exactly four solutions to theCSP.

v3

v2

v1

v0

p3 p2

p1

p0

Figure 4.2: Macro-structure of CSP in solved form.

The zeros of each polynomial in the basis correspond to one of the following constraints of the

CHAPTER 4. CSPS IN SOLVED FORM 58

CSPin directionally solved form with≺ the macro-structure of which is depicted in Figure 4.2:

C ′{ v3 } = { g, ry, y, r } ;

C ′{ v2,v3 } = { (r, g), (y, ry), (ry, y), (g, r) } ;

C ′{ v1,v3 } = { (g, g), (ry, ry), (y, y), (r, r) } ;

C ′{ v0,v3 } = { (r, g), (y, ry), (ry, y), (g, r) } ;

C ′{ p3,v3 } = { (g, g), (r, ry), (r, y), (r, r) } ;

C ′{ p2,v3 } = { (r, g), (r, ry), (r, y), (g, r) } ;

C ′{ p1,v3 } = { (g, g), (r, ry), (r, y), (r, r) } ;

C ′{ p0,v3 } = { (r, g), (r, ry), (r, y), (g, r) } .

Example 4.6 (Five Queens Problem).The following constraints model a 5-queens problem, i.e.
the problem of positioning five queens on a five by five chessboard such that none of the queens
attacks another queen. It is assumed that thei-th queenqi is placed in thei-th column of the
board.

C{ qi } = { 0, 1, 2, 3, 4 } , for i ∈ { 0, 1, 2, 3, 4 };
C{ qi,qj } =

{
(ri, rj) ∈ { 0, 1, 2, 3, 4 }2 : ri 6= rj ∧ (ri − i)2 6= (rj − j)2

}
,

for i 6= j, andi, j ∈ { 0, 1, 2, 3, 4 }.

The generating bases for the constraints are given by the equations:

B{ qi } =

{ ∏
0≤j≤4

(qi − j)

}
, for i ∈ { 0, 1, 2, 3, 4 }

and

B{ qi,qj } =


∏

1≤k≤4
k 6=j−i

((qi − qj)2 − k2)

 , for 0 = i < j ≤ 4.

Note that this time the construction of the generating bases is slightly different from the previous
example. Strictly speaking, the generating bases of the bivariate ideals are too loose, i.e. they
have too many zeros (some of them are “outside” the board). The ideals generated by the univari-
ate polynomials overcome this because they will “remove” these superfluous zeros. Furthermore,
these univariate bases ensure that the generating system will be that of a radical ideal.

Let X =
⋃4
i=0 { qi } andBX the union of the generating bases and≺ the lexicographical

order whereq4 ≺ q3 ≺ q2 ≺ q1 ≺ q0. The reduced Gröbner basisGX of 〈BX 〉 with respect to

CHAPTER 4. CSPS IN SOLVED FORM 59

≺ is given by:
{q5

4 − 10q4
4 + 35q3

4 − 50q2
4 + 24q4

, 6q2
3 − 5q3q

3
4 + 30q3q

2
4 − 37q3q4 − 30q3 − 10q4

4

+ 90q3
4 − 254q2

4 + 210q4 + 36
, 24q2 + 25q3q

4
4 − 200q3q

3
4 + 515q3q

2
4 − 460q3q4

+ 72q3 − 50q4
4 + 440q3

4 − 1270q2
4 + 1264q4 − 240

, 24q1 − 25q3q
4
4 + 200q3q

3
4 − 515q3q

2
4 + 460q3q4

− 72q3 + 50q4
4 − 420q3

4 + 1150q2
4 − 1092q4 + 120

, 6q0 + 6q3 − 5q3
4 + 30q2

4 − 37q4 − 30
}.

The basis shows that after having positionedq4 andq3 at valid locations there is only one pos-
sibility to position the remaining three queens. This is demonstrated by the fact that each of the
last three polynomials in the basis islinear in the variable which is its leading term. The number
of reduced terms of the reduced Gröbner basis is5×2×1×1×1 = 10.2 Theorem 3.46 (Count-
ing Theorem) guarantees that there are exactly ten solutions to the5-queens problem. TheCSP
in directionally solved form which is equivalent to(X,D,C) is given by(X,D,C ′), where

C ′ =
{
C ′{ q4 }, C

′
{ q3,q4 }, C

′
{ q2,q3,q4 }, C

′
{ q1,q3,q4 }, C

′
{ q0,q3,q4 }

}
;

C ′{ q4 } = { 0, 1, 2, 3, 4 } ;

C ′{ q3,q4 } = { (2, 0), (3, 0), (3, 1), (4, 1), (0, 2),

(4, 2), (0, 3), (1, 3), (1, 4), (2, 4) };
C ′{ q2,q3,q4 } = { (4, 2, 0), (1, 3, 0), (0, 3, 1), (2, 4, 1), (3, 0, 2),

(1, 4, 2), (2, 0, 3), (4, 1, 3), (3, 1, 4), (0, 2, 4) };
C ′{ q1,q3,q4 } = { (1, 2, 0), (4, 3, 0), (2, 3, 1), (0, 4, 1), (1, 0, 2),

(3, 4, 2), (4, 0, 3), (2, 1, 3), (0, 1, 4), (3, 2, 4) };
C ′{ q0,q3,q4 } = { (3, 2, 0), (2, 3, 0), (4, 3, 1), (3, 4, 1), (4, 0, 2),

(0, 4, 2), (1, 0, 3), (0, 1, 3), (2, 1, 4), (1, 2, 4) }.

Note that originally there were ten binary constraints, whereas theCSP in directionally solved
form contains one binary constraint and three ternary constraints.

4.7 Concluding Remarks

In this chapter, we have studied a new technique for the transformation of extensionalCSPs to
equivalentCSPs in directionally solved form with respect to a certain variable ordering. The
resultingCSPs correspond to reduced Gröbner bases for lexicographical term orders.

If the CSP in directionally solved form is satisfiable, a backtrack-free search for the first
solution exists. Furthermore all solutions can be found without encountering dead-ends.

2The reduced terms are
{
t1t2 : (t1, t2) ∈

{
q4
4 , q

3
4 , q

2
4 , q4, 1

}× { q3, 1 }
}

.

CHAPTER 4. CSPS IN SOLVED FORM 60

Most of the time needed in the transformation process is spent on the computation of a Gröb-
ner basis of a zero-dimensional ideal. The general problem of computing Gröbner bases is very
difficult. Computing such bases for zero-dimensional ideals is much easier in practice. Sugges-
tions have been presented on how to improve the algorithm.

Chapter 5

The Geometry of Constraints

5.1 Introduction

This chapter presents tools to analyse and disect constraints. The tools are the building blocks for
a newgeneralised backtracking algorithmwhich is a generalisation of the well known chrono-
logical backtracking algorithm. Generalised backtracking is sound and complete.

The motivation for the generalised backtracking algorithm is as follows. It has been observed
in the mathematical community that a solution strategy for systems of multivariate polynomial
equations where Gröbner bases with respect to total degree orders are factorised and the induced
problems are solved is to be preferred to a strategy where lexicographical Gröbner bases (elim-
ination ideals/strict “lexicographical” rules) dictate the order in which equations should be used
to decompose the problem[Boegeet al., 1986; Czapor, 1989; Melenk, 1990; 1993; Gräbe, 1994;
Pesch, 1996]. The reasons are two-fold. Firstly, the Gröbner bases with respect to total degree
orders are (normally) easier to compute. Secondly, the polynomials occurring in the total degree
bases (normally) have a lower degree thereby leading to factors of lower degree. Gräbe further-
more observes that problems coming from real life often fulfill the condition of being factorisable
[Gräbe, 1994]. The strategy used by the chronological backtracking algorithm is similar to the
“lexicographical” approach mentioned before. The generalised backtracking algorithm on the
other hand is motivated by similar observations as the “total degree” approach. To be more spe-
cific, the generalised backtracking algorithm is not restricted to the use of unary constraints (the
domains of the variables) alone to decompose problems.

Both the chronological backtracking algorithm and the generalised backtracking algorithm
traverse search trees. The chronological backtracker decomposes problems at each internal node
of the search tree by considering a unary constraint (the domain of a variable). For each member
in the unary constraint it creates a sub-problem. The number of sub-problems that have to be
considered is equal to the cardinality of the unary constraint. In terms of tree traversals the unary
constraint determines the (local) number of branches the sub-trees of which the chronological
backtracker has to traverse. This number is called thelocal branching factor. As already indi-
cated, the generalised backtracking algorithm can useanykind of constraint to obtain a problem
decomposition. It will be demonstrated that this will never result in a higher local branching

61

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 62

factor but may result in a lower local branching factor in return for a marginal increase in the
space complexity.

The chronological backtracking algorithm has received much attention from many researchers.
Variants of the algorithm range from a vanilla version[Golomb and Baumert, 1965], to for-
ward checking[Haralick and Elliott, 1980] andMAC [Sabin and Freuder, 1994], and to back-
jumping [Gaschnig, 1978], conflict directed backjumping[Prosser, 1993], and dynamic back-
tracking [Ginsberg and McAllester, 1994]. For detailed treatments of and surveys of back-
tracking the reader may wish to confer[Kondrak and van Beek, 1995; 1997; Nadel, 1989;
Dechter and Frost, 1999]. The reader may wish to consult[Ginsberg, 1993; Tsang, 1993] for
an introductory treatment of backtracking.

It is a well established fact that in order to keep (backtrack) search efficient it is imperative
that the branching factors of the nodes near the root of the search tree be kept as small as possible.
The contribution of generalised backtracking is that it is the first attempt to keep the branching
factor of the search tree small by analysing the structure ofanykind of constraint and by using
an alternative (exhaustive) way to enumerate the members of the constraint.

The remainder of this chapter is as follows. Section 5.2 introduces the notions ofcovers
andpartitionsof constraints. This is followed by Section 5.3 which introduces the notion of a
linear constraint and shows how linear constraints can be used to simplifyCSPs. Arguments are
presented that this simplification corresponds to a “localised” breadth-first search. Special kinds
of partitions of constraints are discussed in Section 5.4. The generalised backtracking algorithm
and the experimental results are presented in Section 5.5. A summary is presented in Section 5.6.

5.2 Covers and Partitions of Constraints

This section presents methods to decompose anyCSPinto severalCSPs the solutions of which
are pairwise disjoint and the union of the solutions of which is equal to the solutions of the
original CSP. It is shown that certain kinds of decompositions are essentially the same as the
decompositions that are (implicitly) computed by the chronological backtracking algorithm.

First, the notions of acoverof a constraint, that of apartition of a constraint, and that of a
maximal partitionof a constraint are presented. This is followed by a proposition which demon-
strates the applicability of these notions to the decomposition ofCSPs. Finally, an example is
presented where the proposition is applied to a maximal partition of a unary constraint to decom-
pose aCSP, thereby explaining how chronological backtracking works.

In the following,2S denotes thepower setof S, i.e. the set of all subsets ofS.

Definition 5.1 (Cover). Let S be a set. A setκ ⊆ 2S is called acoverof S if S = ∪c∈κc. The
set containing all covers ofS is denotedK(S), i.e.K(S) =

{
κ ⊆ 2S : S = ∪c∈κc

}
.

Example 5.2 (Cover).The set{ { 0, 1 } , { 1, 2 } } is a cover of{ 0, 1, 2 }.

Definition 5.3 (Partition). LetS be a set. A setπ ∈ K(S) is called apartition of S if (∀s1, s2 ∈
π)(s1 ∩ s2 = ∅ ⇐⇒ s1 6= s2). The set of all partitions ofS is denotedΠ(S).

Partitions are covers whose members are pairwise disjoint.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 63

Example 5.4 (Partition). The set{ { 0, 1 } , { 2 } } is a partition of{ 0, 1, 2 }.
Themaximal partitionof a setS is the set{ { s } : s ∈ S }.
It is recalled that the variety of the intersection of two ideals is equal to the union of their va-

rieties (Theorem 3.26), i.e. ifI andJ are ideals of some polynomial ringk[X] then the following
must hold:

V (I ∩ J) = V (I) ∪ V (J) .

It is also recalled that the variety of the sum of two ideals and the intersection of their varieties
are the same (Theorem 3.28), i.e. ifI andJ are ideals of some polynomial ringk[X] then the
following must hold:

V (I + J) = V (I) ∩ V (J) .

Finally, it is recalled that there is a relationship between varieties and constraints. The relation-
ship is that a constraintCS ⊂ kn is the variety of an ideal ofk[S].

Let C = (X,D,C) be anyCSP, letCT be any member ofC, and letκ be any cover ofCT .
The following proposition states that on the one hand the solutions ofC and on the other the
union of the solutions of theCSPs which are created by replacingCT in C by the members ofκ
are the same.

Proposition 5.5 (Covers of Constraints).LetX be a non-empty set of variables, letR = k[X],
and letD(x) ⊂ k, for all x ∈ X. Furthermore, let(X,D,C) be anyCSP, let T ⊆ X, let
CT ∈ C, and letC ′ = C \ {CT }. If κ ∈ K(CT) is a cover ofCT then the following holds:

V

(∑
V ∈C

IR (V)

)
=
⋃
c∈κ

V

(
IR (c) +

∑
W∈C′

IR (W)

)
.

Proof. It holds that:

V (IR (CT)) = V (IR (∪c∈κc))
= V (∩c∈κ IR (c))

=
⋃
c∈κ

V (IR (c)) . (5.1)

It is also true that:

V

(∑
V ∈C

IR (V)

)
= V

(
IR (CT) +

∑
V ∈C′

IR (V)

)

= V (IR (CT)) ∩ V

(∑
V ∈C′

IR (V)

)
.

Using Equation (5.1) this is tantamount to:

V

(∑
V ∈C

IR (V)

)
= (
⋃
c∈κ

V (IR (c))) ∩ V

(∑
V ∈C′

IR (V)

)

=
⋃
c∈κ

V

(
IR (c) +

∑
V ∈C′

IR (V)

)
,

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 64

which completes the proof.

Notice that partitions are covers. Therefore, Proposition 5.5 also applies to partitions and
maximal partitions.

Proposition 5.5 allows for the decomposition of aCSP into a collection ofCSPs. The col-
lection represents theCSP in the sense that the union of the solutions of the members of that
collection is equal to the solutions of thatCSP.

The following demonstrates how Proposition 5.5 can be used to explain how the chronologi-
cal backtracking algorithm works.

Example 5.6 (Chronological Backtracking).Let C = (X,D,C) be theCSP, where

X = {x, y } ;

C =
{
C{x }, C{ y }, C{x,y }

}
;

D(x) = { 1, 2 } ;

D(y) = { 1, 2, 3 } ;

C{x } = { 1, 2 } ;

C{ y } = { 1, 2, 3 } ;

C{x,y } = { (1, 1), (1, 2), (2, 3) } .

The solution set ofC is C{x,y }. To backtrack withx as the current variable corresponds to
the application of Proposition 5.5 to theCSP for the cover (maximal partition, really)π ={
C ′{x }, C

′′
{x }

}
, whereC ′{x } = { 1 } andC ′′{x } = { 2 }.

The application of Proposition 5.5 toπ allows for the decomposition of the constraintC{x }
into the two constraintsC ′{x } andC ′′{x }. The two constraints can be used to dissectC into the
two CSPsC ′ andC ′′, where

C ′ = (X,D,
{
C ′{x }, C{ y }, C{x,y }

}
);

C ′′ = (X,D,
{
C ′′{x }, C{ y }, C{x,y }

}
).

The solutions ofC ′ are given by{ (1, 1), (1, 2) } and the solutions ofC ′′ are given by{ (2, 3) }.
The union of the solutions ofC ′ and C ′′ is equal to the solution set ofC. If the “standard”
lexicographical heuristics are used then a chronological depth-first backtracking algorithm will
first solveC ′ and thenC ′′.

5.3 Linear Constraints

This section will discuss how to use certain properties of constraints to simplify binaryCSPs.
In particular it will be shown that what will be calledlinear constraints (many-to-one-relations)1

can be used to simplify binaryCSPs. The simplifications consist of a transformation of a binary
1A suitable name for linear constraints could also have beenfunctionalconstraints had it not been for the fact

that there is a “name clash” for such constraints. For example,[Van Hentenrycket al., 1992] and[David, 1995]

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 65

CSPto a binaryCSPwhere a variable has been eliminated (modulo renaming). The sizes of the
domains in the resultingCSPwill be less than or equal to the sizes of the domains in the original
CSP. The number of binary constraints in the resultingCSP will be less than the number of
binary constraints in the originalCSP. It will be argued that such transformation can be regarded
as a “localised” breadth-first search of depth two.

The remainder of this section is as follows. First, definitions will be provided of thedegreeof
a set of variables in a constraint and that of alinear constraint. Next, examples will be provided
of the application of linear constraints to the simplification ofCSPs. Finally, a summary will be
presented.

Let k = C. The degree of a variable of a polynomial and the total degree of a polynomial
are closely related to the number of zeros of that polynomial ink. For example, the degree of a
variable in a polynomial is an upper bound of the maximal number of assignments to the variable
for which the polynomial will vanish given fixed assignments to the remaining variables in the
polynomial.

Example 5.7 (Polynomial Degree (1)).LetP = x2 − 3x+ 2 = (x− 1)(x− 2). The degree of
x in P is 2 andP has exactly2 zeros forx in P.

Example 5.8 (Polynomial Degree (2)).LetP = x2 − y.

• The degree ofx in P is 2. If we substitute any value fromk for y in P then there are either
1 or 2 zeros ink for x in P.

• The degree ofy in P is 1. If we substitute any value fromk for x in P then there is1 zero
for y in P.

The ideal-variety correspondence allows us to translate polynomials to constraints and vice
versa. This suggests that constraints also have “degrees” and “total degrees.” The following is
an attempt to generalise these notions of degree and total degree to that of the degree of a set of
variables in a constraint. Notions similar to that of the degree of a constraint do not seem to have
appeared before in artificial intelligence. The number of substitutions of values for a variable in
a polynomial corresponds to a branching factor of a constraint in a search tree. As will be shown
later, the degree of a set of variables in a constraint relates these variables to the branching factor.
Constraints with low degrees correspond to low branching factors in search.

Definition 5.9 (Degree of Constraint).Let S andT be non-empty sets of variables such that
S ⊆ T . Furthermore, letR = k[T], let CT be a constraint whose cardinality is finite, and let
deg(·, ·) be the function depicted in Figure 5.1. The numberdeg(CT , S) is called thedegreeof S
in CT . The degree of{x } in CT will also be called thedegreeof x in CT or thex-degreeof CT .

both use functional constraints with a different meaning. Functional constraints in the context of[Van Hentenryck
et al., 1992] are what will be calledbi-linear constraints here further on. They correspond to one-to-one relations.
Functional constraints in the context of[David, 1995] correspond to the notion of what will be called linear binary
constraints in this work.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 66

functiondeg(CT , S) :
vard,m, I, Js, Ps, Vs;
begin

if CT = ∅ then
return0;

else if|S| = 1 then begin
let T \ S = {x1, . . . , xm };
I := IR (CT);
Js := { 〈x1 − v1, . . . , xm − vm 〉R : (v1, . . . , vm) ∈ km };
Vs := {V (I + J) : J ∈ Js };
d := max({ |V | : V ∈ Vs });
returnd;

end
else begin

Ps := { π ∈ Π(CT) : (∀c ∈ π)(∃x ∈ S)(deg(c, {x }) = 1) };
d := min({ |π| : π ∈ Ps });
returnd;

end;
end;

Figure 5.1: Degree function.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 67

If |S| = 1 then the degree ofS in CT is the maximum number of solutions for the variable in
S that are “allowed” byCT given fixed assignments to the variables inT \ S.

A constraintCT is called linear in x ∈ T if the degree ofx in CT is one. CT is called
quadratic in x ∈ T if the degree ofx in CT is two, and so on. A binary constraintC{x,y } is
calledbi-linear if it is linear in bothx andy. A constraintCT is calledsub-linear(in S ⊆ T) if
CT = ∅. Finally, a constraintCT will be calledlinear if it is linear in some variable inT .

Example 5.10 (Degree).Consider the binary constraintC{x,y } given by:

C{x,y } = { (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (2, 0) } .

The constraintC{x,y } is not linear inx. For example, there are three tuples inC{x,y } whose
second members are equal. Therefore, the degree ofx in C{x,y } is at least three. Similarly,
C{x,y } is not linear iny either. It is left to the reader to verify that the degree ofx in C{x,y } is
three and that the degree ofy in C{x,y } is four.

Note thatdxy = deg(C{x,y }, {x, y }) > 1 becauseC{x,y } is non-empty and is neither linear
in x nor linear iny. However, it can be shown thatdxy = 2. For example, consider the following
two constraints:

C ′{x,y } = { (0, 1), (0, 2), (0, 3) } ;

C ′′{x,y } = { (0, 0), (1, 0), (2, 0) } .

BothC ′{x,y } andC ′′{x,y } are linear. The former is linear inx and the latter is linear iny. The set

π =
{
C ′{x,y }, C

′′
{x,y }

}
is a partition ofC{x,y }. It follows from the definition of the degree of

{x, y } in C{x,y } thatdxy ≤ |π| = 2. As observed before,dxy > 1. Clearly,dxy is two.

Linear constraints can be used to simplify binaryCSPs. If an arc-consistent constraintC{x,y }
is linear then the variablesx andy can beamalgamatedinto a “super-variable” which represents
the values in the Cartesian product of the domains ofx andy that are inC{x,y }. The cardinality
of the domain of the super-variable is equal tomax(|D(x)|, |D(y)|) and the number of con-
straints in the resultingCSPwill be less than the number of constraints of the originalCSP. The
transformation will leave all constraints of the formC{w } orC{w,z } intact, forw andz /∈ { x, y }.

Thus, linear binary constraints allow for the elimination of a variable without causing an
increase in the domain sizes of the variables or the number of constraints. The remainder of
this section provides concrete examples about the flavour of linear constraints and how to exploit
their properties.

Example 5.11 (Singleton Domains).During backtrack search it often occurs that the domain of
a future variable reduces to a singleton set. Letx be such variable.

If the problem is binary and if the problem is arc-consistent thenx can be removed. Should
there be solutions then the projections of these solutions onto the domain ofx will be the value
in its domains.

If CT is a constraint which involvesx and if the domain ofx is a singleton thenCT is linear or
sub-linear inx. CT is linear or sub-linear inx because any assignment to the variables inT \{ x }

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 68

which satisfies the projection ofCT ontoT \ { x } can be extended to at most one assignment to
the variables inT such that this extended assignment satisfiesCT . If the projection ofCT onto
the domain ofx is non-empty then the constraintCT can be contracted to a constraint onT \{ x }
without “losing” any solutions; the solutions forx can always be recovered.

The reasonwhy the solutions can be recovered is thatT is linear inx. Therefore, there is a
function from the variables inT \ {x } to x. If CT is binary, then the contraction ofCT entails
the creation of a unary constraint on the remaining variable, sayy, in T \ { x }. If the problem
is arc-consistent then the contraction ofCT is the same asD(y) and it can be ignored. In binary
CSPs that are arc-consistent, variables whose domains are singletons can therefore be eliminated.

In the previous example it was argued that a variablex whose domain is a singleton can
be removed from binary arc-consistentCSPs because there is a function from the variables in
T \ {x } to x and that this mapping could be used to recover the value ofx. This isexactlythe
same reason as the one upon whichMAC (a backtracker which maintains arc-consistency[Sabin
and Freuder, 1994]) relies, namely that after the assignment of a value to the current variable
and after arc-consistency processing the current variable can be removed from a problem if it
is arc-consistent because there is a function from the future variables to the current variable.
Some people may argue thatx can be removed because itsonly value has been “saved” and can
therefore be recovered. Other people may argue that after the assignment tox any arc-consistent
constraint betweenx and another variable has “become” universal and can therefore be removed.
However, the concept ofx being “dependent on” a function is more general because—as the
following example will demonstrate—it allows for the simultaneous recovery ofseveral different
values ofx as opposed to only one.

1 2 3 4w

1 2 3 4x

1 2 3 4y

Figure 5.2: Micro-structure before amalga-
mation.

1 2 3 4w

a b c dz

Figure 5.3: Micro-structure after amalga-
mation.

Example 5.12 (Amalgamation of Nodes (1)).Consider the constraint satisfaction problemC
whose micro-structure is depicted in Figure 5.2. All constraints are binary. The constraintC{w,x }
is not linear. The remaining constraintC{x,y } is bi-linear.

Consider the sub-problem consisting of the two variablesx andy, their domains, and the
constraintC{x,y }. As it turns out the sub-problem has exactly four solutions. The nodesx andy

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 69

can be transformed into a new nodez whose domain contains four valuesa, b, c andd without
increasing the maximum domain size. The transformation is such that these four values represent
the four solutions of the sub-problem.

Figure 5.3 depicts the micro-structure of the sameCSPwherex andy have been “amalga-
mated” into one fresh variablez. The valuea in the domain ofz represents the tuple(x, y) =
(1, 2), b corresponds to(x, y) = (2, 3), c corresponds to(x, y) = (3, 4), andd corresponds
to (x, y) = (4, 1). The problem is satisfiable if and only if the original problem is satisfiable,
and its solutions are in one-to-one correspondence with the solutions of its original problem. The
structure of the new problem is simpler than that of the original problem.

Transformations, like the one from theCSPwhose micro-structure is depicted in Figure 5.2 to
theCSPwhose micro-structure is depicted in Figure 5.3 may also be regarded as the elimination
of a variable which linearly depends on a linear constraint (modulo renaming).

For binaryCSPs the worst-case time-complexity for the detection ofall linear constraints is
in O (ed2). This is exactly the time that is required to make aCSParc-consistent—an “overhead”
which is considered to be well spent by researchers in the constraint satisfaction area. It is not
difficult to see how to incorporate part of the work for the detection of linear constraints into
existing arc-consistency algorithms.

If the domain sizes are large then most binary constraints are not linear and this can be found
out without much overhead. The reason why this does not require much overhead is that it is
not difficult (on average) to detect that there are at least two tuples in a binary constraint whose
first members are equal and to find two tuples in a binary constraint whose second members are
equal. However, when domain sizes become small a relatively large proportion of all the possible
binary constraints are linear. To detect that a constraint is linear is relatively easy if the sizes of
the domains are small. As argued, every linear binary constraint allows for the cheap elimination
of a variable from theCSP.

An application of linear constraints which is different from search is to settings where humans
are aided by constraint based decision-support-systems. Humans are easily baffled by many vari-
ables and many constraints. On the other hand, they seem to understand linear constraints well.
They also seem to understand the kind of transformation which corresponds to the amalgamation
of nodes. The application of linear constraints to the automatic transformation of aCSPto aCSP
whose structure is easier to understand and in one-to-one correspondence to the originalCSP
seems to be very appropriate in such settings.

The following example demonstrates that, in the presence of constraint propagation, to amal-
gamate two variables that are involved in a linear binary constraint does not only allow for the
elimination of variables but may sometimes allow for the elimination of values.

Example 5.13 (Amalgamation of Nodes (2)).Consider theCSPwhose micro-structure is de-
picted in Figure 5.4. TheCSPconsists of four variablesw, x, y andz, their domains, and four
binary constraintsC{w,z }, C{x,z }, C{x,y }, andC{ y,z }. TheCSPis arc-consistent.

The binary constraintsC{w,z }, C{x,z }, C{x,y }, andC{ y,z } which were mentioned before are
explicit. Besides these explicit constraints there are also implicit constraints. These constraints
are determined by projections, (natural) joins, and intersections of constraints. For example, there
is an implicit constraintC{x,y,z } betweenx, y, andz. C{x,y,z } = { (2, 1, 1) }. The constraint

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 70

1 2w

1

2

x

1

2

y

1 2z

Figure 5.4: Micro-structure before collaps-
ing x andy.

1 2w

1 2z

a bu

Figure 5.5: Micro-structure after collapsing
x andy.

betweenx, y, andz may also be considered as a constraint betweenx andy on the one hand
andz on the other. This constraint is given byC{ (x,y),z } = { ((2, 1), 1) }. The members of
C{ (x,y),z } are in one-to-one correspondence to the solutions of the sub-problem involving the
variablesx, y, andz, their domains, and the constraintsC{x,y }, C{x,z }, andC{ y,z }.

C{x,y } is linear. Therefore, the nodesx andy can be amalgamated into a nodeu whose
domain contains one value for each of the tuples that are “allowed” byC{x,y } without increasing
the size of the domains. Renaming(x, y) to u, (1, 2) to a, and(2, 1) to b results in aCSPthe
solutions of which are in one-to-one correspondence with the solutions of the originalCSP. In
particular,(w, z, u) = (1, 1, b) ⇐⇒ (w, x, y, z) = (1, 2, 1, 1).

The micro-structure of the resultingCSPis depicted in Figure 5.5. Note that theCSPis not
arc-consistent. The values2 in the domain ofz anda in the domain ofu have lost support as a
“result” of the constraintC{ (x,y),z } which was implicit betweenx, y, andz. It is straightforward
to make theCSParc-consistent again.

To conclude this section it should be observed that the amalgamation of two variablesx and
y corresponds to what may be regarded as a localised breadth-first search of depth two. To
see why this is true observe that the domain of the amalgamation of two variables contains the
representatives of the values in the constraint between the variables. This set is equal to the set
containing the allowed assignments of the nodes of the search tree at depth two which uses an
ordering wherex andy are the first variables. The advantage of amalgamation is that no decision
has to be made yet about which value to assign to which variable, it simplifies the problem,
and it allows for cheap constraint propagation. The advantage of not making a decision about
which variable has to become the next current variable is that to postpone this decision may avoid
assignments leading to traversals of sub-trees that are infeasibly large.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 71

5.4 Linear Partitions

The previous sections have demonstrated the usefulness of partitions of constraints and linear
constraints. In this section we shall study a special kind of partition calledlinear partitions and
a function to compute such partitions. The function is non-trivial in the sense that the cardinality
of its result is “low.” We shall see that linear partitions and the transformation to amalgamate
nodes can be used to enumerate the nodes in the search tree of constraints more efficiently than
chronological backtracking.

In the following letprojxij (·) be theprojection functiondefined as follows:

projxij ((vi1 , . . . , vim)) =

{
vij if 1 ≤ j ≤ m;

⊥ otherwise.

Definition 5.14 (Layer). Let S be a non-empty set of variables, letx ∈ S, and letCS be a
non-empty constraint. Furthermore, letC{x } = { projx(t) : t ∈ CS }. A setSx ⊆ CS is called
anx-layer of CS if |Sx| = |C{x }| and{ projx(t) : t ∈ Sx } = C{x }.

Example 5.15 (Layer). Let C{x,y } = { (0, 0), (0, 1), (1, 2) }. There are twox-layers of
C{x,y }. They are given by{ (0, 0), (1, 2) } and by{ (0, 1), (1, 2) }. The onlyy-layer ofC{x,y }
is given byC{x,y } itself.

Layers of binary constraints—as the following lemma demonstrates—are linear.

Lemma 5.16 (Linearity of Layers of Binary Constraints). LetC{x,y } be a non-empty binary
constraint, letz ∈ { x, y } and letz′ = x+ y− z. If Sz is az-layer ofC{x,y } thenSz is linear in
z′.

Proof. If Sz is not linear inz′ then there must be at least two tuples, sayt1 andt2 in Sz, such
thatprojz(t1) = projz(t2). This cannot be true because|Sz| = |

{
projz(t) : t ∈ C{x,y }

}
| and

{ projz(t) : t ∈ Sx } =
{

projz(t) : t ∈ C{x,y }
}

.

Lemma 5.17 (Monotonicity). LetC{x,y } be a binary constraint, letz ∈ { x, y }, and letSz be a
z-layer ofC{x,y }. Furthermore, letdw = deg(C{x,y }, {w }), and letd′w = deg(C{x,y } \ Sz, w),
for w ∈ { x, y }. Thenmin(d′x, d

′
y) < min(dx, dy).

Proof. Trivial.

Definition 5.18 (Linear Partition). A linear partition is a partition whose members are linear.

The following defines a function to transform a binary constraint to a linear partition of that
constraint.

Proposition 5.19 (Linear Partition of Binary Constraint). Let C{x,y } be a non-empty finite
constraint. Furthermore, letdx = deg(C{x,y }, {x }), and letdy = deg(C{x,y }, { y }). Finally,
let Pl(·) be the function defined in Figure 5.6, thenPl(C{x,y }) is a linear partition ofC{x,y }.
Furthermore,|Pl(C{x,y })| ≤ min(dx, dy).

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 72

functionPl(Ci) :
varBi, Ci+1,Ri, z;

begin
if Ci = ∅ then

return∅;
else begin

if deg(Ci, {x }) > deg(Ci, { y }) then
z := x;

else ifdeg(Ci, {x }) < deg(Ci, { y }) then
z := y;

else
z := any member from{x, y };

Bi := anyz-layer ofCi;
Ci+1 := Ci \Bi;
Ri := {Bi } ∪ Pl(Ci+1);
returnRi;

end;
end;

Figure 5.6: Partition function

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 73

Proof. Let C1 = C{x,y }. To prove that the proposition is correct it has to be demonstrated that
Pl(C1) terminates, thatPl(C1) is a partition ofC1, that the members ofPl(C1) are linear, and
that the cardinality ofPl(C1) does not exceedmin(dx, dy).

termination Assume thatPl(C1) does not terminate. By assumption|C1| is finite. It follows
from the non-termination ofPl(C1) and its termination criterion thatCi ⊃ ∅ for i ∈
N \ { 0 }. This together with the definition ofBi allows us to infer that∅ ⊂ Bi ⊆ Ci must
hold. Therefore,Ci+1 = Ci \Bi ⊂ Ci and it follows that the sequence

C1 ⊃ C2 ⊃ C3 ⊃ · · ·

is infinite. This contradicts the premise that|C1| is finite.

partition property Let C1 = C{x,y } and letd = |Pl(C1)|. To prove thatPl(C1) is a partition
of C1 we must prove thatC1 = ∪c∈Pl(C1)c and that(∀CS, CT ∈ Pl(C1))(CS 6= CT ⇐⇒
∅ = CS ∩ CT).

First note thatPl(Ci) = ∪di=1 {Bi }. Next note thatCi+1∪Bi = Ci, for i = d, d−1, . . . ,1.
Clearly,Pl(C1) is a cover ofC1. To see why the members ofPl(C1) are pairwise disjoint,
observe thatBj ⊆ Ci+1 = Ci \Bi, for 1 ≤ i < j ≤ d.

linearity property By Lemma 5.16,Bi is linear, for1 ≤ i ≤ d.

cardinality property Use Lemma 5.17 and induction onmin(dx, dy).

We are almost ready to demonstrate the application of linear partitions. Before doing so we
need to define the notion of ageneralised branching factor.

Definition 5.20 (Generalised Branching Factor).Thegeneralised branching factorof a linear
partition of a constraint is given by the cardinality of that partition.

Note that maximal partitions of unary constraints are linear. Therefore, the notions of gener-
alised branching factor and that of the branching factor coincide for maximal partitions of unary
constraints.

The application of linear partitions will become apparent in the next example. Before we go
on to that example, it should be pointed out that the minimum of the degrees of the variables that
are involved in an arc-consistent binary constraint, cannot exceed the minimum of their domain
sizes. This is formulated as the following proposition.

Proposition 5.21. Let C{x,y } be a non-empty constraint, letdz = deg(C{x,y }, { z }), and let
D(z) =

{
projz(t) : t ∈ C{x,y }

}
, for z ∈ { x, y }, then

min(dx, dy) ≤ min(|D(x)|, |D(y)|).

Proof. |D(y)| ≥ dx and|D(x)| ≥ dy.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 74

In the previous section we have seen that backtracking uses linear partitions of unary con-
straints to enumerate the members of the domain of the current variable. We have also seen that
linear binary constraints can be used to amalgamate two variables. We have argued that this
may be viewed as variable elimination (modulo renaming). By combining linear constraints and
amalgamation, we can obtain lower (generalised) branching factors.

Example 5.22 (Generalised Backtracking).Consider the constraintC{x,y } whose micro-struc-
ture is depicted at the top of Figure 5.7. The constraint is cubic inx and iny. The two constraints

1 2 3 4 5x

1 2 3 4 5y

1 2 3 4 5x

1 3 4y

1 4x

2 3 5y

Figure 5.7: Linear partition.

whose micro-structures are depicted at the bottom of Figure 5.7 form the partitionπ = { C1, C2 }
of C{x,y }, where

C1 = { (1, 1), (2, 3), (3, 4), (4, 4), (5, 4) } ;

C2 = { (1, 2), (1, 3), (4, 5) } .

C1 is linear iny, whereasC2 is linear inx. The partition was computed usingPl(·) by always
selecting the lexicographically smallestz-layer to compute the setsBi.

Note that the generalised branching factor ofπ (the cardinality ofπ) is 2. This is strictly
less than thex-degree and they-degree of the original constraint. This demonstrates that the
inequality in Proposition 5.19 may be strict.

The in-order search trees for the chronological backtracking algorithm for the variable order-
ingsx ≺ y andy ≺ x are depicted in Figures 5.8 and 5.9. The subscripts of the nodes and leaves

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 75

x = 11

y = 12 y = 23 y = 34

x = 25

y = 36

x = 37

y = 48

x = 49

y = 410 y = 511

x = 512

y = 413

Figure 5.8: In-order search tree. Variable orderingx ≺ y. Branching factor is5. Number of
visited nodes is13.

y = 11

x = 12

y = 23

x = 14

y = 35

x = 16 x = 27

y = 48

x = 39 x = 410 x = 511

y = 512

x = 313

Figure 5.9: In-order search tree. Variable orderingy ≺ x. Branching factor is5. Number of
visited nodes is13.

(x, y) ∈ { (1, 1), (2, 3), (3, 4), (4, 4), (5, 4) }1

(x, y) = (1, 1)2 (x, y) = (2, 3)3 (x, y) = (3, 4)4 (x, y) = (4, 4)5 (x, y) = (5, 4)6

(x, y) ∈ { (1, 2), (1, 3), (4, 5) }7

(x, y) = (1, 2)8 (x, y) = (1, 3)9 (x, y) = (1, 5)10

Figure 5.10: Generalised search tree. Generalised Branching Factor is2. Number of Visited
Nodes is10.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 76

of the trees represent the visiting order. Both trees have13 visited nodes and have a branching
factor of5 at the root of the tree. The number of leaves of the tree is equal to the cardinality of
the constraintC{x,y }.

Thegeneralised search treecorresponding to the partitionπ is depicted in Figure 5.10. The
nodes and leaves of this tree are visited by ageneralised backtracking algorithm. At the root
of the tree there are two branches—one for each member ofπ. Each of the members ofπ is
linear. As argued before, linear binary partitions of arc-consistent constraints correspond to the
domain of a variable. As also argued before, a linear arc-consistent binary constraint can be used
to eliminate a variable (modulo renaming) by amalgamating the variables that are involved.

1. The number of leaves of the generalised search tree is equal to the number of leaves of the
in-order search trees. There is one leaf for each member of the constraint.

2. The linearity ofπ ensures that the maximum domain size does not increase.

3. The generalised branching factor at the root does not exceed the minimum domain size
(the branching factors of the in-order search trees) ofx andy and is usually less than it.

4. The linearity of the partitions ensures that the depth of the generalised search tree is the
same as that of the in-order search trees.

5. The number of visited nodes of the generalised backtracking tree is less than the number
of nodes of each of the chronological backtracking trees. This is a consequence of 1, 2,
and 3, and the fact that (for this example) the generalised branching factor is strictly less
than the minimum domain size.

The most important effect of the generalised backtracking approach is that it has decreased
the generalised branching factor.

As argued before, chronological backtracking uses linear partitions of unary constraints to
decompose problems. The best generalised branching factor that can be obtained by the chrono-
logical backtracking algorithm is equal to the minimum domain size of the variables in a problem.
The generalised branching factor of binary constraints is usually less than the minimum domain
size of the variables that are involved.

Generalised backtracking works because the degrees of constraints determine the generalised
branching factor. If the degree of a variablex in a binary constraint isdx thenx can be eliminated
(modulo renaming) at the cost of a branching factor ofdx or less. We have already observed that
dx never exceeds the cardinality of the domain ofx and may be less than it. Ifdx is less than
the domain size ofx then a smaller branching factor can be achieved than with the traditional
backtracking approach. Since the domain sizes do not increase and since the height of the search
tree remains the same this results in strictly fewer visited nodes.

Figures 5.7–5.10 suggest that every leaf in the tree (read the representatives of the members
of C{x,y }) can be visited. This is not true in general. There are at least two reasons. The first
reason is that in general there may be more variables in a problem and the variables which will be
the current variable at depth two from the root of the tree may be different. The second reason is
that branches may become dead-ends as a result of the use of constraint propagation techniques.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 77

5.5 Experimental Results

This section presents some experimental results obtained by the application of the generalised
backtracking algorithm to some examples from the literature. First we shall discuss some imple-
mentation issues. Next we shall describe the problems, present the results, and discuss improve-
ments. Finally, we shall discuss future work.

5.5.1 Implementation Issues

The algorithm which was used for the experiment described in this section was implemented in
Haskell. The following are the steps carried out by the algorithm.

• The algorithm maintains arc-consistency. Backtracking occurs as soon as an arc-inconsis-
tency occurs.

• The algorithm removes every variable which is not involved in any constraint.

• The algorithm uses a heuristic to select a binary constraintC{x,y } whose generalised
branching factor is likely to be low. In the process of findingC{x,y }, all universal con-
straints will be removed. The algorithm uses the domain sizes of the variables to get an
impression of an upper bound on the generalised branching factor.C{x,y } is selected from
the constraints whose variables have the smallest domains. Note that a minimum domain
size heuristic would have selected the next current variable to be a variable whose domain
size was equal tomin(|D(x)|, |D(y)|).
The algorithm will inspectC{x,y } to see if it is linear.

– If C{x,y } is linear then the algorithm will amalgamatex andy. Should this result
in an inconsistency then backtracking occurs. Otherwise, the algorithm solves the
remaining problem.

– If C{x,y } is not linear then the algorithm uses the functionPl(·) defined in Proposi-
tion 5.19 to compute a linear partitionπ of that constraint. For each of the members
C ′{x,y } of π the algorithm replacesC{x,y } byC ′{x,y }, amalgamatesx andy, and if this
did not result in an inconsistency, solves the remaining problem.

As with most other algorithms, heuristics were used to decide tie-breaks. These tie-break
deciding heuristics did not make use of special properties of the problem that were solved.

The implementation was not aimed at efficiency in the sense of reducing the total number of
consistency-checks. Instead, the aim was to reduce the generalised branching factors.

5.5.2 Some Results

This section describes the results of applications of the generalised backtracking algorithm to
two large problems known from the literature. The objective of the experiment was to determine
the generalised branching factors during the different stages of the problem and compare this

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 78

with the minimum domain size of the variables at these stages. For a chronological backtrack-
ing algorithm which maintains arc-consistency the minimum domain size of the variables is a
lower bound on its generalised branching factor. The problems which were used are the Radio
Link Frequency Assignment Problems (RLFAPs) #3 and #4[CELAR, 1994]. These problems
are originally optimisation problems. However, they have been used here as exemplification
problems.

Problem Variables Constraints
Total Number Universal Linear Partitioned

RFLAP #3 400 2760 80 199 173
RFLAP #4 680 3967 99 300 181

Table 5.1: Problem overview.

Some basic properties ofRLFAP #3 and #4 are listed in Table 5.1. The column “Variables”
lists the number of variables for the problems. The column “Total Number” in the “Constraints”
column lists the number of binary constraints of the problems. The column “Linear” in the
“Constraints” column lists the number of linear constraints that were detected during search. It
is recalled that such constraints were used for the elimination of a variable (modulo renaming).
The column “Partitioned” in the “Constraints” column lists the number of (non-linear) constraints
which were partitioned during search. Note that this number represents the number of decision
points which were encountered during search. For neither of the problems was backtracking
required.

In the following, letπi be thei-th linear partition (thei-th decision point) which was com-
puted by the algorithm. LetOi be the original branching factor at the stage in the backtracking
process whenπi was computed. It is recalled thatOi is the minimum domain size of all remain-
ing variables in the problem—the best branching factor which can be obtained by a chronolog-
ical backtracking algorithm which maintains arc-consistency. Finally, letGi be the generalised
branching factor ofπi.

Figure 5.11 depicts the original branching factorOi and the generalised branching factorGi

for RLFAP #3. The solid line depictsOi as a function ofi. The dashed line depictsGi as a
function of of i. Figure 5.11 depicts the ratioGi/Oi of the generalised and original branching
factors as a function ofi.

Figure 5.13 depicts the original and generalised branching factors forRLFAP #4. Figure 5.14
depicts the ratio of the generalised and original branching factors forRLFAP #4.

A first observation is that the generalised branching factor does not exceed the original
branching factor and can be considerably less than it (especially forRLFAP #3). The ratio be-
tween the generalised and the original branching factors can be as much as 0.4–0.5 even at nodes
where there are many branches. This may be an indication that a proper implementation could
also save consistency-checks. A second observation is that (especially forRLFAP #4) the ratio
between the original and the generalised branching factor is almost 1 at different times during
search. This may be an indication that the problems are relatively loose at those times.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 79

0 50 100 150
0

10

20

30

40

Figure 5.11: Branching factors for RLFA problem #3. Solid:Oi. Dashed:Gi.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Figure 5.12: RatioGi/Oi of branching factors for RLFA problem #3.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 80

0 50 100 150
0

5

10

15

Figure 5.13: Branching factors for RLFA problem #4. Solid:Oi. Dashed:Gi.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Figure 5.14: RatioGi/Oi of branching factors for RLFA problem #4.

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 81

5.5.3 Future Work

In this section we shall investigate possibilities for proper implementations of the generalised
backtracking algorithm.

After arc-consistency has been obtained, it is important to find a binary constraint with a low
generalised branching factor. To find such constraints may require many consistency-checks.
However, a lot of the work to detect such constraints can be combined with the work to maintain
arc-consistency. The main reason for this is that an upper bound of the generalised branching
factor of a constraintC{x,y } is min(dx, dy), wheredx is thex-degree ofC{x,y } anddy is the
y-degree ofC{x,y }. In the following, letz be any member of{x, y }, let z′ = x+ y − z, and let
v be any member ofD(z). Furthermore,

• Let S+
z (v) be the values inD(z′) that are known to supportv.

• Let S−z (v) be the values inD(z′) that are known not to supportv.

• Let u(v, z) = |D(z′)| − |S−z (v)|, and letU(z) = max({u(v, z) : v ∈ D(z) }. ThenU(z)
is an upper bound for thez-degree ofC{x,y }

• Let l(v, z) = |S+
z (v)|, and letL(z) = max({ l(v, z) : v ∈ D(z) }. ThenL(z) is a lower

bound for thez-degree ofC{x,y }.

As part of their effort to make problems arc-consistent, arc-consistency algorithms can keep
track the consistency-checks they carried out. For each constraintC{x,y } these consistency-checks
can be used to get an idea about thex-degreedx of C{x,y } and they-degreedy of C{x,y } because
L(x) ≤ dx ≤ U(x) andL(y) ≤ dy ≤ U(y). If Pl(·) is used to compute a linear partition of
C{x,y } then the minimum branching factor ofPl(C{x,y }) is at mostmin(dx, dy).

5.6 Summary

In this chapter, techniques have been presented to use the geometry of constraints to study their
properties, to transformCSPs, and to solve them. It has been shown that geometric properties of
constraints can be used to reason about and simplifyCSPs.

The notion of the degree of a set of variables in a constraint has been introduced. This has led
to the notion of a linear constraint and it has been shown how linear constraints can be used for the
simplification ofCSPs by amalgamating the variables involved in a linear binary constraint. This
amalgamation operation corresponds to a variable elimination (modulo renaming). Arguments
have been presented that for binaryCSPs the average costs for the detection of linear constraints
is low if arc-consistency is maintained.

It has been shown that the essence of chronological backtracking is that it uses linear par-
titions of unary constraints (the domains of the variables) to decompose aCSP into a set of
CSPs the solutions of which are disjoint and whose union is equal to the solutions of the orig-
inal CSP. The cardinality of a linear partition is called the generalised branching factor of that

CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 82

partition. The optimal generalised branching factor for a chronological backtracking algorithm
which maintains arc-consistency is equal to the minimum domain size.

A generalisation of the chronological backtracking algorithm has been presented. This algo-
rithm, called generalised backtracking, is not restricted to the use of linear partitions of unary
constraints to decomposeCSPs but can use any kind of constraint for this purpose. A function
Pl(·) has been presented to compute linear partitions of binary constraints. The cardinalities of
these partitions are small. IfC{x,y } is a constraint such that the size of the domain ofx or y is
equal to the minimum domain size then the generalised branching factor ofPl(C{x,y }) is never
larger then the minimum domain size but may be smaller.

A few results have been presented of applications of a toy implementation of the generalised
backtracking algorithm. The results are promising in the sense that they demonstrated that sig-
nificant reductions of the generalised branching factor can be obtained. It may be possible that,
with proper adjustments, the algorithm may become an improvement on the standard backtrack-
ing algorithm in the sense that it will also save consistency-checks. Suggestions have been pre-
sented on how to properly implement the algorithm. However, future research has to demonstrate
whether generalised backtracking can be implemented efficiently and proper experiments have to
be set up to compare chronological and generalised backtracking. Of course, these experiments
should be complemented by a theoretical investigation.

Chapter 6

The AC-3b Arc-Consistency Algorithm

6.1 Introduction

Arc-consistency algorithms are widely used to reduce the search-space ofCSPs (Constraint Sat-
isfaction Problems). Arc-consistency algorithms requiresupport-checks(also known as consis-
tency-checks in the constraint literature) to find out about the properties ofCSPs. They use
arc-heuristicsanddomain-heuristicsto select their next support-check. Arc-heuristics operate at
arc-leveland select the constraint that will be used for the next check. Domain-heuristics operate
at domain-level. Given a constraint, they decide which values will be used for the next check.
Certain kinds of arc-consistency algorithms use heuristics which are—in essence—a combina-
tion of arc-heuristics and domain-heuristics.

In this chapter we will present a domain-heuristic which uses the notion of adouble-support
checkto improve the average performance of arc-consistency algorithms. The improvement is
that, where possible, support-checks are used to find supports fortwo values, one in the domain
of each variable, which were not previously known to be supported. It is motivated by the insight
thatin order to minimise the number of support-checks it is necessary to maximise the number of
uncertainties which are resolved per check.We used this idea to improveAC-3 andDEE to obtain
a new general purpose arc-consistency algorithm calledAC-3b. We will present experimental
results of a comparison ofDEE, AC-3, AC-7, and AC-3b. Our experimental results seem to
indicate thatAC-3b always performs better thanDEE and usually performs better than bothAC-3
andAC-7 for the set of test-problems under consideration. Our average time-complexity results
to be presented in Chapter 7 support these results. Together, these results seem to suggest that the
double-support heuristic can be used to improve arc-consistency algorithms beyond the current
state-of-the-art.

It is well known from the literature that arc-heuristics can influence the performance of
arc-consistency algorithms. To the best of our knowledge, ours is the first domain-heuristic
to improve the performance of arc-consistency algorithms.

The rest of this chapter is organised as follows. In Section 6.2 we will briefly recall some of
the concepts from the constraint satisfaction literature that will be used in this chapter. We will
discuss related work in Section 6.3. In Section 6.4 we will present the notion of a double-support

83

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 84

check. We will describeAC-3b in Section 6.5. Our experimental results will be presented and
discussed in Section 6.6. Finally, in Section 6.7, we will present our conclusions and discuss
further research.

6.2 Constraint Satisfaction Theory

In this section we will briefly recall the notions from the constraint satisfaction literature that
will be used in this chapter. In Section 6.2.1 we will recall some basic constraint satisfaction
terminology. In Section 6.2.2 we will lay out the main concepts of arc-consistency.

6.2.1 Constraint Satisfaction

Remember that aCSP is a triple(X,D,C), whereX is a set containing the variables of the
CSP, D is a function which maps each of the variables of theCSPto its domain, andC is a set
containing the constraints of theCSP. We will denote the domain of variablex byD(x). In this
chapter we will only considerbinary CSPs, i.e. we will only considerCSPs where the arity of
the constraints is at most 2.

A binary constraintC{x,y } ⊆ D(x) ×D(y) between two variablesx andy is a set of pairs.
The pairs in the constraint represent the only combinations of values the variables can take.
C{x,y } allows forx to take the valuev andy to take the valuew if and only if (v, w) ∈ C{x,y }.
Likewise, aunary constraintC{x } is a subset of the domain ofx. A member of a constraint is
said tosatisfythe constraint.

A CSPis callednode-consistentif and only if, for each variablex, eitherC{x } 6∈ C or each
value in its domain satisfiesC{x }. Without loss of generality we will only consider node-consis-
tentCSPs. Furthermore, we will assume that(∀x ∈ X)(D(x) 6= ∅). A test of the formv ∈ C{x }
or (v, w) ∈ C{x,y } is called asupport-check(normally referred to asconsistency-checkin the
constraint literature).

Associated with a binaryCSPis its directed constraint graph with nodes corresponding to the
variables, and arcs corresponding to the constraints in theCSP. For every unary constraintC{x }
an arc(x, x) exists. For every binary constraintC{x,y }, two directed arcs(x, y) and (y, x)
exist. These arcs correspond to the “directed” relationsRxy andRyx, whereRxy = C{x,y }
andRyx = { (w, v) : (v, w) ∈ Rxy }. The set containing all directed relations is calledR.
More formally,R = ∪C{ x,y }∈C {Rxy, Ryx }. Two distinct variablesx andy in a CSPare called
neighboursif C{x,y } ∈ C. A CSPis calledconnectedif its constraint graph is connected.

An algorithm is calledbi-directionalif it exploits the general property of binary relations that
(v, w) ∈ Rxy if and only if (w, v) ∈ Ryx for anyv ∈ D(x), anyw ∈ D(y) and anyRxy ∈ R
[Bessièreet al., 1995].

6.2.2 Arc-Consistency

Let x andy be variables, letv ∈ D(x), and letw ∈ D(y); theny = w supportsx = v if
(v, w) ∈ Rxy. In additionx = v is said to besupportedby y if there is somew ∈ D(y) such

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 85

thaty = w supportsx = v.
Given the notion of support, a connectedCSP is calledarc-consistentif and only if every

value in the domain of every variable is supported by all the neighbours of that variable.
A CSPis calledinconsistentif it has no solutions. Arc-consistency algorithms repeatedly re-

move all unsupportable values from the domains of variables, or decide that aCSPis inconsistent
by finding that some variable has no supported values in its domain.

Arc-consistency algorithms require support-checks to find out about the properties ofCSPs.
They usearc-heuristicsanddomain-heuristicsto select their next support-check. Arc-heuristics
operate atarc-level and select the constraint that will be used for the next check. Domain-
heuristics operate atdomain-level. Given a constraint, they decide which values will be used
for the next check. Certain kinds of arc-consistency algorithms use heuristics which are—in
essence—a combination of arc-heuristics and domain-heuristics.

6.3 Related Work

In this section we will briefly discuss some related work ongeneral purposearc-consistency
algorithms. Here, by general purpose algorithm, is meant an algorithm which can be applied to
any binaryCSP.

One of the earliest algorithms isAC-3 [Mackworth, 1977]. It has a worst-case time-complex-
ity of O (ed3) and a space-complexity ofO (e+ nd) [Mackworth and Freuder, 1985; 1993]. As
usualn denotes the number of variables in theCSP, e denotes the number of binary-constraints,
andd denotes the maximum domain-size.

Gaschnig introduced a related algorithm calledDEE [Gaschnig, 1978]. DEE differs from
AC-3 in that, in essence, whereasAC-3 processes only one arc(x, y) at a time,DEE processes
both(x, y) and(y, x) at the same time.

A bi-directional arc-consistency algorithm calledAC-7 has been presented in[Bessièreet
al., 1995]. AC-7 never repeats support-checks, has aO (ed) space-complexity, optimalO (ed2)
worst-case time-complexity, and never performs worse thanAC-3 if AC-3 and AC-7 are both
implemented with the usual lexicographic heuristics.

It is known from the literature that arc-heuristics can influence the performance of arc-con-
sistency algorithms[Wallace and Freuder, 1992]. To the best of our knowledge, no reports have
yet been presented that the proper use of domain-heuristics can improve the performance of
arc-consistency algorithms.

6.4 Double-Support Checks

In this section we will introduce the notion of adouble-support checkand point out some of its
properties. Consider the 2-variableCSPwhose micro-structure is depicted in Figure 6.1. For
this CSPwe need at least four checks to find support for the four different values in the domain
of y. These checks will also find us support for the values1, 2, and3 in the domain ofx.
Furthermore, we need at least four checks to decide that the value4 has to be removed from the

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 86

domain ofx. Therefore, the total number of support-checks that we need to transform theCSP
to its arc-consistent equivalent is eight or more. The minimum number of support-checks that
are required is eight.

If a heuristic of lexicographically ordering the data-structures inAC-3, DEE, andAC-7 is
assumed, thenAC-7 would need 11 support-checks to make theCSParc-consistent. The checks
required byAC-7 are given by(1, 1) ∈ Rxy, (2, 1) ∈ Rxy, (2, 2) ∈ Rxy, (3, 1) ∈ Rxy,
(3, 2) ∈ Rxy, (3, 3) ∈ Rxy, (4, 1) ∈ Rxy, (4, 2) ∈ Rxy, (4, 3) ∈ Rxy, (4, 4) ∈ Rxy, and
finally, (4, 1) ∈ Ryx. DEE would also need 11 support-checks to transform thisCSP into its
arc-consistent equivalent. ForAC-3 this number would be 17. One of the reasons whyAC-3
needs more support-checks thanDEE andAC-7 is becauseAC-3 does not exploit the fact that
relations are bi-directional. Bi-directionality is used byDEE, because while it is constructing a
support forx, each value inD(y) which is found to support a value inD(x) is marked. It then
tries to determine which values inD(y) are supported byx but will not try to find a support
for those values inD(y) which are marked because they are already known to be supported.
Bi-directionality is exploited byAC-7 because it never tests for(w, v) ∈ Ryx if it already has
checked(v, w) ∈ C{x,y }, and vice versa.

1 2 3 4x

1 2 3 4y

Figure 6.1: Micro-structure of 2-variable CSP.

But even for 2-variableCSPs and the lexicographical heuristics mentioned before,DEE and
AC-7 do too much work. For example, afterAC-7 has established thaty = 1 supportsx = 1, the
first thing it will do to find a support forx = 2 is to try to find it withy = 1. As shown further
on, it would be better to postpone the check(2, 1) ∈ Rxy, because a support forx = 2 may
be found elsewhere inD(y), thus allowing for the possibility oftwo values to be added to those
values which are known to be supported—as opposed to only one. The basic idea presented in
this chapter is the insight thatin order to minimise the number of support-checks it is necessary
to maximise the number of uncertainties that are resolved per check.

The objective of arc-consistency processing is to resolve some uncertainty; it has to be
known, for eachv ∈ D(x) and for eachw ∈ D(y), whether it is supported. Support-checks
are performed to resolve these uncertainties. Asingle-support check, (v, w) ∈ C{x,y }, is one
in which, before the check is done, it is already known that eitherv or w are supported. Adou-
ble-support check, (v, w) ∈ C{x,y }, is one in which there is still, before the check, uncertainty
about the support-status of bothv andw. If a double-support check is successful, two uncer-
tainties are resolved. If a single-support check is successful, only one uncertainty is resolved. A

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 87

good arc-consistency algorithm, therefore, would always choose to do a double-support check in
preference to a single-support check, because the former offers the potential higher payback.

At any stage in the process of making the 2-variableCSParc-consistent:

• There is a setS+
x ⊆ D(x) whose values are all known to be supported byy;

• There is a setS?
x = D(x) \ S+

x whose values are unknown, as yet, to be supported byy.

The same holds if the roles forx andy are exchanged. In order to establish support for a value
v?
x ∈ S?

x it seems better to try to find a support among the values inS?
y first. The advantage of

this is that for eachv?
y ∈ S?

y the check(v?
x, v

?
y) ∈ C{x,y } is a double-support check and it is just

as likely that anyv?
y ∈ S?

y supportsv?
x as it is that anyv+

y ∈ S+
y does. Only if no support can be

found among the elements inS?
y , should the elementsv+

y in S+
y be used for single-support checks

(v?
x, v

+
y) ∈ C{x,y }. After it has been decided for each value inD(x) whether it is supported or

not, eitherS+
x = ∅ and the 2-variableCSPis inconsistent, orS+

x 6= ∅ and theCSPis satisfiable. In
the latter case, the elements fromD(x) which are supported byy are given byS+

x . The elements
in D(y) which are supported byx are given by the union ofS+

y with the set of those elements of
S?
y which further processing will show to be supported by somev+

x ∈ S+
x .

If we apply the procedure as sketched before1 to theCSPwhose micro-structure is depicted
in Figure 6.1 we would save support-checks when compared toDEE andAC-7. Instead of the
11 checks needed byAC-7, we would only need the following eight checks:(1, 1) ∈ C{x,y },
(2, 2) ∈ C{x,y }, (3, 3) ∈ C{x,y }, (4, 4) ∈ C{x,y }, (4, 1) ∈ C{x,y }, (4, 2) ∈ C{x,y }, (4, 3) ∈
C{x,y }, and finally, (1, 4) ∈ C{x,y }. Remember that as argued before eight is the absolute
minimum number of checks that are needed to make theCSParc-consistent.

It is not difficult to find an example where our approach would lead to more support-checks
than required withAC-7, DEE or AC-3. For a random 2-variableCSP, however, the proposed
method is more likely to lead to fewer support-checks. Proof of this will presented in the fol-
lowing chapter. The crucial insight is thatmaximising the number of successful double-support
checks is a prerequisite to minimising the total number of support-checks. The experimental
results in Section 6.6 seem to support the claim that a heuristic which aims at maximising the
number of successful double-support checks is efficient.

6.5 The AC-3b Algorithm

Motivated by the observations in Section 6.4, we present a new arc-consistency algorithm called
AC-3b. The algorithm is depicted in Figure 6.2 and Figure 6.3. The style of presentation of
the algorithm was chosen to keep it consistent with the style normally found in the literature.
The input to theAC-3b algorithm consists of the directed constraint graphG of theCSP, the set
D of the domains of the variables in theCSPand the constraintsC of the CSP. Its output is
either(wipeout, ∅) if the CSPis arc-inconsistent or(consistent, D′) otherwise, whereD′ is the
arc-consistent equivalent ofD.

1Again we assume lexicographical ordering.

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 88

Q← { (x, y) ∈ G : x 6= y };
D′ ← copy(D);
whileQ 6= ∅ do begin

select and remove any(x, y) fromQ;
(S+

x , S
+
y , S

?
y)← partition(D′(x), D′(y), C{x,y });

if S+
x = ∅ then begin
return(wipeout, ∅);

end;
if D′(x) \ S+

x 6= ∅ then begin
replaceD′(x) in D′ by S+

x ;
Q← Q ∪ { (z, x) ∈ G : z 6= x, z 6= y };

end
if (y, x) ∈ Q then begin

remove(y, x) fromQ;
S+
y ← S+

y ∪
{
vy ∈ S?

y : (∃vx ∈ S+
x)((vx, vy) ∈ C{x,y })

}
;

if D′(y) \ S+
y 6= ∅ then begin

replaceD′(y) in D′ by S+
y ;

Q← Q ∪ { (z, y) ∈ G : z 6= x, z 6= y };
end

end
end
return(consistent, D′);

Figure 6.2: The AC-3b algorithm.

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 89

As shown in Figure 6.2AC-3 uses a function calledpartition. This function is shown in
Figure 6.3. Its input consist of the domainsD(x) andD(y) and the constraintC{x,y }. Its output
consists of a tuple(S+

x , S
+
y , S

?
y) such thatS+

y ⊆ D(y), S?
y = D(y) \ S+

y and in addition:

S+
x =

{
vx ∈ D(x) : (∃vy ∈ S+

y)((vx, vy) ∈ C{x,y })
}
∧

S+
y ⊆

{
vy ∈ D(y) : (∃vx ∈ S+

x)((vx, vy) ∈ C{x,y })
}
.

These rules express the fact thatS+
x is the set of all values inD(x) which are supported byD(y),

that each of its members is supported by some value ofS+
y as well and thatS+

y does not contain
values which are not supported byS+

x .

S?
x ← D(x);
S+
x ← ∅;
S?
y ← D(y);
S+
y ← ∅;

while S?
x 6= ∅ do begin

select and remove anyv?
x from S?

x;
if ∃v?

y ∈ S?
y such that(v?

x, v
?
y) ∈ C{x,y } then begin

select and remove any suchv?
y from S?

y ;
S+
x ← S+

x ∪
{
v?
x

}
;

S+
y ← S+

y ∪
{
v?
y

}
;

end
else if∃v+

y ∈ S+
y such that(v?

x, v
+
y) ∈ C{x,y } then begin

S+
x ← S+

x ∪
{
v?
x

}
;

end
end
return(S+

x , S
+
y , S

?
y);

Figure 6.3: Thepartition algorithm.

For theAC-3b algorithm it is assumed that the inputCSPis already node-consistent.AC-3b
is a refinement of theAC-3 algorithm as described in[Mackworth, 1977] andDEE as described
in [Gaschnig, 1978]. The subscriptb in the name stands for bi-directional; perhaps ad for dou-
ble-support would have been more appropriate. Compared withAC-3 the refinement is that when
arc(x, y) is being processed and the reverse arc(y, x) is also in the queue, then support-checks
can be saved because only support for the elements inS?

y has to be found (as opposed to support
for all the elements inD(x) in theAC-3 algorithm). Compared withDEE the refinement consists
of the double-support heuristic.

AC-3b inherits all its properties likeO (ed3) worst-case time-complexity and aO (e+ nd)
worst-case space-complexity fromAC-3. The proof follows directly from the relationship be-
tweenAC-3b andAC-3. Note that the space-complexity ofAC-3b is O (e+ nd) as opposed to
O (ed) for AC-7. The space-complexity characteristics ofAC-3b are better becausee (the number
of constraints) is quadratic inn (the number of variables).

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 90

6.6 Experimental Results

In this Section we present experimental results to enable comparisons betweenAC-3, DEE,
AC-7, andAC-3b. In Section 6.6.1 we will describe the experiments and the implementations of
the algorithms. In Section 6.6.2 we will discuss the results. Throughout this section,#cc(A)
will denote the (average) number of support-checks performed by arc-consistency algorithmA.

6.6.1 Description of the Experiment

In order to compare the arc-consistency efficiency ofAC-3, DEE, AC-7, andAC-3b we have gen-
erated 30,420 random connectedCSPs. For each combination of (density, average tightness) in
{ (d/40, t/40) : t ∈ { 1, 2, . . . , 39 } , d ∈ { 1, 2, . . . , 39 } }, we generated twenty random con-
nectedCSPs. Here, thedensityof a connected binaryCSPis defined to be2× (e−n+ 1)/(n2−
3n + 2), wheren > 2 is the number of variables in theCSPande is the number of edges in
the constraint-graph[Sabin and Freuder, 1994]. The tightnessof a constraintC{x,y } is defined
to be1 − |C{x,y }|/(|D(x)| × |D(y)|). The average tightnessof a binaryCSP is the average
of the tightnesses of the binary constraints[Sabin and Freuder, 1994]. The number of variables
per CSPwas a random number from 15 to 25. The domain size of the variables was always
equal to the number of variables in the problem. The task of the arc-consistency algorithms con-
sisted of transforming eachCSP into its arc-consistent equivalent or deciding that theCSPdid
not have an arc-inconsistent equivalent. Thelexicographical queueheuristic (see[Wallace and
Freuder, 1992] for a description) was used for adding elements to, and removing elements from,
queues/streams in all the algorithms.

The DEE version used for the experimentation here, is an arc-queue based version of the
one described in[Gaschnig, 1978]. This implementation allows for a good estimation of the
efficiency of the double-support heuristic sinceDEE andAC-3b both process the same edges in
the same order. The two algorithms only differ in their domain heuristic, i.e. they only differ in
the way they establish support for the elements in the domains of the variables at both ends of an
edge.

6.6.2 Discussion of Results

In this section we will present the results of our experimentation described in the previous section.
We have depicted the average numbers of support-checks forAC-3, DEE, AC-7, andAC-3b for
the randomCSPs at each combination of density and tightness in Figures 6.4–6.7. The numbers
of support-checks for each algorithm averaged over each problem are presented in Table 6.1.

Figures 6.8–6.11 depict the difference graphs for the average number of support-checks
betweenAC-3 and DEE, betweenAC-3 and AC-3b, betweenDEE and AC-3b, and between
AC-7 and AC-3b. The jagged lines at the bottom of Figures 6.8, 6.9, and 6.11 are where
the difference between the number of support-checks equals zero. Figure 6.12 depicts1 −
#cc(AC-3b)/#cc(DEE). Figure 6.13 depicts1−#cc(AC-3b)/#cc(AC-7).

Table 6.1 seems to suggest that theDEE approach is a waste. Despite the fact thatDEE uses
the property that constraints are bi-directional, it can not gain much from it.AC-3, for example,

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 91

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 6.4:#cc(AC-3).

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 6.5:#cc(DEE).

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 6.6:#cc(AC-7).

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

tightness

density

#cc

Figure 6.7:#cc(AC-3b).

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 6.8:#cc(AC-3)−#cc(DEE).

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 6.9:#cc(AC-3)−#cc(AC-3b).

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 92

DEE AC-3 AC-3b AC-7
#cc 7311 7261 5077 5319

Table 6.1: Average number of support-checks.

does less work thanDEE for certain problems because afterAC-3 has processed arc(x, y) it
does not always immediately process the reverse arc(y, x) if it is in the queue, whereasDEE
always does. To postpone processing(y, x) can be good for two reasons. First, if the domain
of x gets narrowed several times, the effect of adding the arc(y, x) to the queue several times,
can be overcome by processing(y, x) only once. Second, establishing support fory by using
values fromD(x) which will be removed fromD(x) later may waste support-checks. This may
be illustrated by the following two possible events. In the first and most extreme caseAC-3
would process another arc, say(x, z), and detect a wipe-out ofD(x). Had the arc(y, x) been
processed before(x, z) then any support-check spent on this arc would have been wasted. In a
less extreme caseD(x) could have been narrowed by processing other arcs tox. This may save
work when(y, x) has to be processed because, in general, fewer support-checks have to be spent
on each of the values inD(y) whenD(x) gets smaller. Both effects become more pronounced
when constraints become tighter. Only when constraints are loose willDEE outperformAC-3.

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 6.10:#cc(DEE)−#cc(AC-3b).

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975

-20000
-15000
-10000

-5000
0

5000
10000
15000
20000

tightness

density

#cc

Figure 6.11:#cc(AC-7)−#cc(AC-3b).

AC-3b is always better thanDEE. Figure 6.10 shows this—by the way, note that, those parts
of the surface of the graph in Figure 6.10 which appear to be in the horizontal plane#cc = 0
are, in fact, above this plane. This seems to suggest that our double-support heuristic is a good
one. It is interesting to see that the ratio between the number of support-checks saved by the
double-support heuristic and the total number of support-checks, is nearly constant for fixed
tightness (see Figure 6.12).

AC-3b is better thanAC-3 everywhere to the left of the phase transition region.AC-3 becomes
better in the phase transition region, and stays better from there onwards. The reasons whyAC-3
becomes better thanAC-3b as the average tightness increases are the same as whyAC-3 becomes

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 93

better thanDEE as average tightness increases.

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

tightness

density

Figure 6.12:1− #cc(AC-3b)
#cc(DEE)

.

0.025
0.200

0.400
0.600

0.800
0.975 0.025

0.200
0.400

0.600
0.800

0.975
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

tightness

density

Figure 6.13:1− #cc(AC-3b)
#cc(AC-7)

.

Nevertheless, it seems thatAC-3b is a more efficient algorithm on average thanAC-3. The
disadvantage of always processing two arcs (the “DEE effect”) is turned into an advantage by
adopting the double-support heuristic. Possibilities seem to exist to improveAC-3b andDEE.
One possibility is to force the algorithms to degenerate toAC-3 (i.e. never to process a double
arc) as soon as they know (or learn) they are processing tight constraints.

AC-3b requires fewer support-checks thanAC-7 in a larger area in the problem space (see
Figure 6.11 and Figure 6.13) but as tightness increasesAC-7 becomes better. In the low tight-
ness areaAC-3b does better thanAC-7 because most of its support-checks will lead to a double
support. AC-7 accumulates knowledge about support-checks it has already carried out and never
repeats one. Therefore, it has to outperformAC-3b at some stage as tightness increases.

It may seem surprising that (in our setting)AC-3b seems to perform better on the test prob-
lems thanAC-7, despite the fact thatAC-3b has a worse time-complexity. However, this phe-
nomenon actually also occurs elsewhere. For example, in the linear programming community
the exponential simplex algorithm is still preferred over existing polynomial algorithms because
it behaves better on average. AC-4 (another arc-consistency algorithm) has a better (worst-case)
time complexity thanAC-3. This did not stop people from usingAC-3 because it was almost
always better thanAC-4 [Wallace, 1993].

6.7 Conclusions and Recommendations

In this chapter we have presented the notion of a double-support check and a domain-heuristic to
maximise the number of successful double-support checks. We have used this domain-heuristic
to obtain a general purpose arc-consistency algorithm calledAC-3b which is a cross-breed be-
tweenDEE andAC-3. We have presented experimental results which seem to suggest that our
domain-heuristic can improve the average performance of bothDEE andAC-3. These results

CHAPTER 6. THE AC-3B ARC-CONSISTENCY ALGORITHM 94

seem to be the first indication that domain-heuristics can improve the efficiency of arc-consis-
tency algorithms. Our results also seem to indicate that, for the problems under consideration,
AC-3b is more efficient in a large part of the tightness-density space than any existing arc-con-
sistency algorithm includingAC-7 with its usual lexicographical heuristics. We have suggested
changes to improveAC-3b in the high tightness area. These changes would consist of letting the
algorithm degenerate toAC-3 as soon as it would find out that it is processing tight constraints.

It seems that a double-support heuristic can be used to improveAC-7 as well. One of the
changes to the algorithm should consist of the addition of a dynamic value ordering for the values
in the domains of the variables. This ordering should partially depend on support-checks which
were previously carried out, and should also consist of a tie-break ordering. Future research will
have to learn what these proposed changes to these algorithms will mean in terms of average
performance.

Chapter 7

Average Time-Complexity for
Domain-Heuristics

7.1 Introduction

Arc-consistency algorithms are widely used to prune the search-space ofCSPs. Arc-consistency
algorithms requiresupport-checks(also known as consistency-checks in the constraint literature)
to find out about the properties ofCSPs. They usearc-heuristicsanddomain-heuristicsto select
their next support-check. Arc-heuristics operate atarc-leveland select the constraint that will
be used for the next check. Domain-heuristics operate atdomain-level. Given a constraint, they
decide which values will be used for the next check. Certain kinds of arc-consistency algorithms
use heuristics which are—in essence—a combination of arc-heuristics and domain-heuristics.

We will investigate the effect of domain-heuristics by studying the average time-complexity
of two arc-consistency algorithms which use different domain-heuristics. We will assume that
there are only two variables. The first algorithm, calledL, uses a lexicographical heuristic. The
second algorithm, calledD, uses a heuristic based on the notion of adouble-support check.
Empirical evidence presented in the previous chapter suggests that the double-support heuristic
is efficient.

We will define the algorithmsL andD and present a detailed case-study for the case where
the size of the domains of the variables is two. We will show that for the case-studyD is supe-
rior on average. Three reasons will be pointed out why arc-consistency algorithms should give
preference to double-support checks at domain-level.

We will carry out an exact average time-complexity analysis for the case where the domains
are not restricted to have a size of two. Our analysis will provide solid mathematical evidence
thatD is the better algorithm on average.

We will derive relatively simpleexactformulae for the average time-complexity of both al-
gorithms and derive simple expressions for their upper and lower bounds. To be more specific,
we will demonstrate thatL requires about2a+ 2b− 2 log2(a)− 0.665492 checks for sufficiently
large domain sizesa andb. We will also demonstrate that on averageD requires a number of
support-checks which is less than2 max(a, b) + 2 if a+ b ≥ 14. Our results demonstrate thatD

95

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 96

is the superior algorithm. Finally, we will provide the result that on averageD requires strictly
fewer than two checks more than any optimal algorithm ifa+ b ≥ 14. This is the first such result
ever to have been reported.

As part of our analysis we will compare the average time-complexity of the two algorithms
under consideration and discuss the consequences of our simplifications about the number of
variables in theCSP.

The relevance of this work is that the double-support heuristic can be incorporated into any
existing arc-consistency algorithm. Our optimality result is informative about the possibilities
and limitations of domain-heuristics.

The remainder of this chapter is organised as follows. In Section 7.2 we shall provide basic
definitions and review constraint satisfaction. A formal definition of the lexicographical and
double-support algorithms will be presented in Section 7.3. In that section we shall also carry out
our case-study for the case where the size of the domains is two. We shall identify three reasons
which, from an intuitive point of view, suggest that at domain-level arc-consistency algorithms
should give preference to double-support checks. In Section 7.4 we shall carry out our average
time-complexity analysis for the lexicographical algorithm. In Section 7.5 we shall do the same
for the double-support algorithm. We shall compare the results of our average time-complexity
analysis in Section 7.6. Our conclusions will be presented in Section 7.7.

7.2 Constraint Satisfaction

This section provides our basic definitions and reviews constraint satisfaction. Its organisation
is as follows. In Section 7.2.1 we shall provide our basic definitions. In Section 7.2.2 we shall
review the related literature. As we already indicated, it is our intention to study arc-consistency
algorithms for the case where there are only two variables in theCSP. In Section 7.2.3 we shall
discuss the consequences of this simplification.

7.2.1 Basic Definitions

Remember that aconstraint satisfaction problem(or CSP) is a tuple(X,D,C), whereX is a
set containing the variables of theCSP, D is a function which maps each of the variables to its
domain and,C is a set containing the constraints of theCSP.

In this chapter we will only consider constraints between two variables at a time. Let
(X,D,C) be aCSP, let α andβ two variables inX, letD(α) = { 1, . . . , a }, and letD(β) =
{ 1, . . . , b }. A constraint betweenα andβ restricts the values they are allowed to take simulta-
neously. For the purpose of our analysis we will represent constraints as matrices and we will
only consider constraints between two variables at a time. IfM is the constraint betweenα and
β thenM is ana by b zero-one matrix, i.e. a matrix witha rows andb columns whose entries are
either zero or one. The tuple(i, j) in the Cartesian product of the domains ofα andβ is said to
satisfythe constraintM if Mij = 1, whereMij is thej-th column of thei-th row ofM . A value
i ∈ D(α) is said to besupportedby j ∈ D(β) if Mij = 1. Similarly, j ∈ D(β) is said to be
supported byi ∈ D(α) if Mij = 1.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 97

Definition 7.1 (Arc-Consistency).Let (X,D,C) be aCSP. The CSP is calledarc-consistent
if (∀x ∈ X)(|D(x)| 6= ∅) and for each constraintM ∈ C it holds that ifM is betweenα andβ
then for everyi ∈ D(α) there is aj ∈ D(β) which supportsi and vice versa.

If (X,D,C) is a CSP then we will assume that it is such thatX = {α, β } andC =
{M }, whereM is the constraint betweenα andβ. Furthermore we will assume thatD(α) =
{ 1, . . . , a } 6= ∅ andD(β) = { 1, . . . , b } 6= ∅. In other words, we will only concern ourselves
with CSPs where there are two variables, where the domains are non-empty, where there is one
constraint, and where the constraint is between the two variables of theCSP. We shall discuss
the consequences of our simplifications in Section 7.2.3.

We will denote the set of alla by b zero-one matrices byMab. We will call matrices, rows
of matrices and columns of matrices non-zero if they contain more than zero ones, and call them
zero otherwise. Finally, we will assume that unless explicitly stated otherwise all matrices area
by b matrices.

Definition 7.2 (Row-Support). Therow-supportof ana by b matrixM is the set

{ i ∈ {1, . . . , a} | (∃j ∈ { 1, . . . , b })(Mij = 1) } .

The row-support of a matrix is the set containing the indices of its non-zero rows.

Definition 7.3 (Column-Support). Thecolumn-supportof ana by b matrixM is the set

{ j ∈ {1, . . . , b} | (∃i ∈ { 1, . . . , a })(Mij = 1) } .

The column-support of a matrix is the set containing the indices of its non-zero columns.
LetM be ana by b matrix. We will say that rowi supportscolumnj if Mij = 1. Similarly,

columnj is said to support rowi if Mij = 1.
From now on we will also speak of thesupportof a matrix. By this we will mean the tuple

(sr, sc), wheresr is the row-support andsc is the column-support of that matrix.
An arc-consistency algorithmremoves all the unsupported values from the domains of the

variables of aCSPuntil this is no longer possible. For the case where there are two variables,
arc-consistency algorithms compute the support of a matrix. Asupport-checkis a test to find
the value of an entry of a matrix. We will writeM ?

ij for the support-check to find the value of
Mij. An arc-consistency algorithm has to carry out a support-checkM ?

ij to find out about the
value ofMij. The time-complexity of arc-consistency algorithms is expressed in the number of
support-checks they require to find the support of their arguments.

If we assume that support-checks are not duplicated then at mostab support-checks are
needed by any arc-consistency algorithm. For a zeroa by b matrix each of theseab checks
is required. The worst case time-complexity is therefore exactlyab for any arc-consistency al-
gorithm. In this chapter we are interested in the average time-complexity of arc-consistency
algorithms.

If A is an arc-consistency algorithm andM ana by bmatrix, then we shall writechecksA(M)
for the number of support-checks required byA to compute the support ofM .

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 98

Definition 7.4 (Average Time-Complexity).LetA be an arc-consistency algorithm. Theaver-
age time-complexityof A overMab is the functionavgA : N× N 7→ Q, where

avgA(a, b) =
∑

M∈Mab
checksA(M)/2ab.

Definition 7.5 (Repetitive Arc-Consistency Algorithm). Let A be an arc-consistency algo-
rithm, thenA is calledrepetitiveif it repeats support-checks andnon-repetitiveotherwise.

A support-checkM ?
ij is said tosucceedif Mij = 1 and said tofail otherwise. If a sup-

port-check succeeds it is calledsuccessfulandunsuccessfulotherwise.

Definition 7.6 (Trace). Let a andb be positive integers, letM ana by b zero-one matrix, and let
A be an arc-consistency algorithm. ThetraceofM with respect toA is the sequence of the form

(i1, j1,Mi1j1), (i2, j2,Mi2j2), . . . , (il, jl,Miljl), (7.1)

wherel = checksA(M) andM ?
ikjk

is thek-th support-check carried out byA, for 1 ≤ k ≤ l. The
lengthof the trace in Equation (7.1) is defined asl. Itsk-th memberis defined by(ik, jk,Mikjk),
for 1 ≤ k ≤ l.

An a by b matrix hasab entries. Therefore, the lengths of the traces of non-repetitive algo-
rithms are less than or equal toab. An interesting property of traces of non-repetitive algorithms
is the one formulated as the following theorem.

Theorem 7.7 (Trace).LetA be a non-repetitive arc-consistency algorithm, leta andb be posi-
tive integers, letM be ana by b zero-one matrix, and lett be the trace ofM with respect toA.
If l is the length oft then the number of matrices whose trace ist is exactly2ab−l.

Proof. Let thek-th member oft be(ik, jk,Mikjk), for 1 ≤ k ≤ l. We are looking for|S|, where

S =
{
M ′ ∈Mab : (∀k ∈ { 1, . . . , l })(Mikjk = M ′

ikjk
)
}
.

S contains exactly2ab−l members.

The theorem will turn out to be convenient later on because it will allow us to determine the
“savings” of traces of non-repetitive arc-consistency algorithms without too much effort.

7.2.2 Related Literature

Arc-consistency algorithms have been studied for quite some time. In 1977, Mackworth
pointed out reasons why problems that are not arc-consistent are more difficult to solve with
techniques based on backtracking and presented three arc-consistency algorithms calledAC-1,
AC-2, and AC-3 [Mackworth, 1977]. AC-3 is the most efficient of the three and, in a joint
paper with Freuder, worst-case time-complexity results forAC-3 are presented[Mackworth and

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 99

Freuder, 1985]. The lower bound they present isΩ(ed2) and their upper bound isO (ed3), where
e is the number of constraints andd is the maximum domain-size. Both bounds are linear in the
number of constraints.

AC-3, as presented by Mackworth, is not an algorithm as such; it is aclassof algorithms
which have certain data-structures in common and treat them similarly. The most prominent
data-structure used byAC-3 is a queuewhich initially contains each of the pairs(α, β) and
(β, α) for which there exists a constraint betweenα andβ. The basic machinery ofAC-3 is
such thatany tuple can be removed from the queue. For a “real” implementation this means
that certain heuristics determine the choice of the tuple that was removed from the queue. By
selecting a member from the queue, these heuristics determine the constraint that will be used
for the next support-checks. In this chapter, such heuristics will be calledarc-heuristics.

If (α, β) is the tuple that was removed from the queue then every value in the domain ofα
which is not supported by some value in the domain ofβ is removed from the domain ofα. If
values are removed from the domain ofα then pairs of the form(γ, α) are added to the queue
for every constraint betweenγ andα in theCSP, except for the case whereβ = γ. The algorithm
keeps on doing this until either the queue becomes empty in which case theCSPis arc-consistent
or one of the domains becomes empty in which case support-checks can be saved because the
CSPcannot be made arc-consistent.

Not only are there heuristics forAC-3 to remove members from the queue, but also there are
heuristics which, given a constraint, select the values in the domains of the variables that will be
used for the support-checks. Such heuristics we will calldomain-heuristics.

Empirical results from Wallace and Freuder clearly indicate that arc-heuristics influence
the average performance of arc-consistency algorithms[Wallace and Freuder, 1992]. Wallace
presents empirical evidence that the average time required byAC-3 is better than the average
time required byAC-4 [Wallace, 1993]. AC-4 is an arc-consistency which has an optimalO (ed2)
worst case time-complexity[Mohr and Henderson, 1986].

The major drawback ofAC-3 is that it cannot remember the support-checks it has already
carried out and—as a consequence—repeats some of them. Bessière, Freuder and Régin present
another class of arc-consistency algorithms calledAC-7 [Bessièreet al., 1995]. AC-7 is an
instance of theAC-INFERENCEschema, where support-checks are saved by making inference.
In the case ofAC-7 inference is made at domain-level, where it is exploited thatMij = MT

ji ,
where·T denotes transposition. AC-7 has an optimal upper bound ofO (ed2) for its worst case
time-complexity and has been reported to behave well on average.

The most prominent data-structures ofAC-7 are adeletion-streamand aseek-support-stream.
The purpose of the deletion-stream is to propagate the consequences of the removal of a value
from the domain of one of the variables. The seek-support-stream contains tuples of the form
((α, i), β), whereα andβ are variables andi ∈ D(α). A tuple ((α, i), β) in the seek-sup-
port-stream represents the fact that support for the valuei ∈ D(α) has to be found with some
value inD(β). Heuristics to select members from the seek-support-stream have effects on the
number of support-checks that are required and the order in which they are carried out.

AC-7’s heuristics for the selection of tuples from its seek-support-stream are a combination
of arc-heuristics and domain-heuristics. However, becauseAC-7 uses inference, not every re-
moval of every tuple from the seek-support-stream will result in an actual support-check. Since

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 100

a double-support heuristic is but a special example of a heuristic, the heuristics for a particular
implementation ofAC-7 could be such that the domain-level component could (partially) depend
on a double-support heuristic.

In their paper, Bessière, Freuder and Régin present empirical results that theAC-7 approach
is superior to theAC-3 approach. They present results of applications ofMAC-3 andMAC-7
to real-world problems. HereMAC-i is a backtracking algorithm which usesAC-i to maintain
arc-consistency during search[Sabin and Freuder, 1994]. Unfortunately, it is not reported which
members of the classes they use for their comparison, i.e. it is not reported which heuristics they
used forAC-3 andAC-7 and their experiments cannot be repeated to get the same results.

In the previous chapter we presented an empirical comparison betweenAC-7 and AC-3b
which is a cross-breed between Mackworth’sAC-3 and Gaschnig’sDEE [Gaschnig, 1978].
At the domain-level AC-3b uses a double-support heuristic. AC-3b has the same worst-case
time-complexity asAC-3. In the experimental setting of Chapter 6 it turned out that AC-3b was
more efficient thanAC-7 in certain parts of the tightness/density spectrum. The results are an
indication that it is possible to use domain-heuristics to improve the performance of arc-consis-
tency algorithms.

7.2.3 The General Problem

In this section we shall discuss the reasons for, and the consequences of, our decision to study
only two-variableCSPs. Also we will make some general comments about the presentation of
our algorithms further on in this chapter.

One problem with our choice is that we have eliminated the effects that arc-heuristics have
on arc-consistency algorithms. Wallace and Freuder showed that arc-heuristics have effects
on performance[Wallace and Freuder, 1992]. Our study does not properly take the effects of
arc-heuristics into account. However, later in this section we will argue that a double-support
heuristic should be used at domain-level.

Another problem with our simplification is that we cannot properly extrapolate average re-
sults for two-variableCSPs to the case where arc-consistency algorithms are used as part of
MAC-algorithms. For example, in the case of a two-variableCSP, on average about one out of
every two support-checks will succeed. This is not true inMAC-search because most time is
spent at the leaves of the search-tree and most support-checks in that region will fail. A solution
would be to refine our analysis to the case where different ratios of support-checks succeed.

We justify our decision to study two-variableCSPs by two reasons. Our first reason is that at
the moment the general problem is too complicated. We have studied a simpler problem hoping
that it would provide insight to the successfulness of the the double-support heuristic from the
previous chapter.

Our second reason to justify our decision to study two-variableCSPs is that we argue that at
domain-level a double-support heuristic is a good choice and that it can be studied independent
from an arc-heuristic. We assume that support-checks are not repeated.

Our reasoning is as follows. To compute an arc-consistentCSPwe have to find out for each
value in the domain of each of the variables if it is supported. We can only decide if a value

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 101

i ∈ D(α) is inherently unsupportable if we find a constraint betweenα and another variableβ
and use checks foreachof the values inD(β) that were not known to supporti. In other words,
if i is inherently unsupportable thenanydomain-heuristic is a good choice. Ifi is inherently sup-
portable then for each constraint betweenα andβ we should not only find a support as soon as
possible but also find a support with a value inD(β) whose support-status was not yet known, i.e.
we should use double-support checks involvingi. After all, if a double-support check succeeds it
will provide more information about which values are supported by the constraint. This informa-
tion can be used for the purpose of making inference and for the purpose of “guiding” heuristics.
In other words, regardless of the inherent supportability ofi, a double-support heuristic is a good
choice to complement any arc-heuristic. Observe that our reasoning was independent of the
choice of the arc-heuristic that was used. We can probably study the double-support heuristic by
studying it for the case where theCSPis a two-variableCSP.

7.3 Two Arc-Consistency Algorithms

In this section we shall introduce two arc-consistency algorithms and present a detailed case
study where we shall compare the average time-complexity of the two algorithms for the case
where the domain size of both variables is two. The two algorithms differ in their domain-heuris-
tic. The algorithms under consideration are alexicographical algorithmand adouble-support
algorithm. The lexicographical algorithm will be calledL. The double-support algorithm will
be calledD. As part of our presentation, we shall point out three different reasons which, from
an intuitive point of view, suggest that arc-consistency algorithms should give preference to dou-
ble-support checks at domain-level. We shall see that for the problem under considerationD
outperformsL.

The remainder of this section is as follows. In Section 7.3.1 we shall defineL and examine its
average time-complexity for two by two matrices. In Section 7.3.2 we shall defineD and examine
its average time-complexity for two by two matrices. As part of the examination process we will
point out three reasons which suggest that arc-consistency algorithms should give preference to
double-support checks. Finally, in Section 7.3.3, we shall compare the two algorithms.

7.3.1 The Lexicographical AlgorithmL
In this section we shall define thelexicographical arc-consistency algorithmcalledL and discuss
its application to two by two matrices. We shall first defineL and then discuss the application.
We will not be concerned about the data-structures used in implementations ofL. Instead, it is
our intention to present algorithms such that their essence becomes clear. In our presentation we
use an ALGOL-ish pseudo-language which comes with a “forall v ∈ S do statements
od” iteration-construct. The semantics of the construct are that for eachs ∈ S it assignss to
v and carries outstatements . The order in which the members ofS are assigned tov is the
same as the lexicographical order on the members ofS.

In the presentations of our algorithms we will distinguish between dereferencing a constraint
and dereferencing other matrices. This is important because the number of times we derefer-

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 102

functionL(M,a, b) :
/* initialisation */
row-support= ∅;
column-support= ∅;
forall i ∈ { 1, . . . , a } do

forall j ∈ { 1, . . . , b } do
Cij :=unknown;

od;
od;
forall i ∈ { 1, . . . , a } do

/* try to establish support fori */
j := 0;
while (j < b) and(i /∈ row-support) do

/* find lexicographically smallestj that supportsi */
j := j + 1;
Cij := Mij ;
if (Cij = 1) then

row-support:= row-support∪ { i };
column-support:= column-support∪ { j };

fi;
od;

od;
forall j ∈ { 1, . . . , b } \ column-support do

/* try to establish support forj */
i := 0;
while (i < a) and(j /∈ column-support) do

/* find lexicographically smallesti that supportsj */
i := i+ 1;
if (Cij = unknown) then

if (Mij = 1) then
column-support:= column-support∪ { j };

fi;
fi;

od;
od;
return(row-support, column-support);

od;

Figure 7.1: The lexicographical algorithmL.

ence a constraint determines the time-complexity of the algorithms, whereas dereferencing other
matrices does not.

Definition 7.8 (Lexicographical Arc-Consistency Algorithm). Leta andb be positive integers,
and letM ∈ Mab. The lexicographicalarc-consistency algorithm is the algorithmL defined in
Figure 7.1.

It is important to point out that we distinguish between support-checks and matrix look-ups.
Only the checksMij contribute to the total number of support-checks, whereas the look-upsCij
do not.
L does not repeat support-checks.L first tries to establish its row-support. It does this for

each row in the lexicographical order on the rows. When it seeks support for rowi it tries to find
the lexicographical smallest column which supportsi. After L has computed its row-support, it
tries to find support for those columns whose support-status is not yet known. It does this in the
lexicographical order on the columns. WhenL tries to find support for a columnj, it tries to find

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 103

it with the lexicographically smallest row that was not yet known to supportj.

Example 7.9 (L). LetM ∈M33 be the matrix whose first row is[0 1 1], whose second row
is [0 0 0], and whose last row is[1 1 0]. In order to find the support ofM the following
support-checks are carried out byL in their order of appearance:M ?

11, M
?
12, M

?
21, M

?
22, M

?
23,

M ?
31, M

?
13. The trace ofM with respect toL is given by(1, 1, 0), (1, 2, 1), (2, 1, 0), (2, 2, 0),

(2, 3, 0), (3, 1, 1), (1, 3, 1).

1

1

1

1 1

1

1 0

1

1 0

1 1

1 0

1 0

1

0

1

0 1

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

Figure 7.2: Traces ofL. Total number of support-checks is16× 4− 6× 1 = 58.

Figure 7.2 is a graphical representation of all traces with respect toL. Each different path
from the root to a leaf corresponds to a different trace with respect toL. Each trace of length
l is represented in the tree by some unique path that connects the root and some leaf vial − 1
internal nodes. The root of the tree is an artificial0-th member of the traces. The nodes/leaves at
distancel from the root correspond to thel-th members of the traces, for0 ≤ l ≤ ab = 4.

Nodes in the tree are decision points. They represent the support-checks which are carried
out byL. A branch of a noden that goes straight up represents the fact that a support-check, say
M ?

ij, was successful. A branch to the right of that same noden represents the fact that the same
M ?

ij was unsuccessful. The successful and unsuccessful support-checks are also represented at
node-level. Thei-th row of thej-th column of a node does not contain a number if the check
M ?

ij has not been carried out. Otherwise, it contains the numberMij. It is only by studying the
nodes that it can be found out which support-checks have been carried out so far.

Example 7.10 (Trace).The path in Figure 7.2 from the root of the tree to the second leaf from
the right represents the tracet1 = (1, 1, 0), (1, 2, 0)(2, 1, 0), (2, 2, 1). The path from the root
to the leftmost leaf corresponds to the tracet2 = (1, 1, 1), (2, 1, 1), (2, 2, 1). There is only one
two by two zero-one matrix whose trace ist1. There are two two by two zero-one matrices whose
trace is given byt2.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 104

Remember that we denote the number of rows bya and the number of columns byb. It is
important to understand that there are2ab = 24 = 16 different two by two zero-one matrices and
that the traces of different matrices with respect toL can be the same. To determine the average
time-complexity ofL we have to add the lengths of the traces of each of the matrices and divide
the result by2ab. Alternatively, we can compute the average number of support-checks if we
subtract fromab the sum of theaverage savingsof each the matrices, where the savings of a
matrix are given byab− l and its average savings are given by(ab− l)/2ab, wherel is the length
of the trace of the matrix with respect toL. Similarly, we define the average savings of a trace as
the sum of the average savings of all the matrices that have that trace.

It is interesting to notice that all traces ofL have a length of at least three. Notice that,L
is not capable to determine its support in fewer than three support-checks—not even if a matrix
does not contain any zero at all. It is not difficult to see thatLwill always require at leasta+b−1
support-checks.
L could only have terminated with two checks had both these checks been successful. If we

focus on the strategyL uses for its second support-check for the case where its first support-check
was successful we shall find the reason why it cannot accomplish its task in fewer than three
checks. AfterL has successfully carried out its first checkM ?

11 it needs to learn onlytwo things.
It needs to know if2 is in the row-support and it needs to know if2 is in the column-support. The
next check ofL isM ?

21. Unfortunately, this check can only be used to learnonething. Regardless
of whether the checkM ?

12 succeeds or fails, another checkhasto be carried out.
If we consider the case where the checkM ?

22 was carried out as the second support-check we
shall find a more efficient way of establishing the support. The checkM ?

22 offers the potential of
learning abouttwonew things. If the check is successful then it offers the knowledge that2 is in
the row-support and that2 is in the column-support. Since this was all that had to be found out
the checkM ?

22 offers the potential of termination after two support-checks. What is more, one
out of every two such checks will succeed. Only if the checkM ?

22 fails do more checks have to
be carried out. Had the checkM ?

22 been used as the second support-check, checks could have
been saved on average.

Remember that the same trace in the tree can correspond to different matrices. The Trace The-
orem states that ifl is the length of a trace then there are exactly2ab−l matrices which have the
same trace. The shortest traces ofL are of lengthl1 = 3. L finds exactlys1 = 3 traces
whose lengths arel1. The remainingl2 traces all have lengthl2 = ab. Therefore,L saves
(s1 × (ab − l1) × 2ab−l1 + s2 × (ab − l2) × 2ab−l2)/2ab = (3 × (4 − 3) × 24−3 + 0)/24 =
3× 1× 21/24 = 3/8 support-checks on average. The strategy ofL therefore requires an average
number of support-checks ofab − 3

8
= 4 − 3

8
= 35

8
. In the next section we shall see that better

strategies than that ofL exist.

7.3.2 The Double-Support AlgorithmD
In this section we shall introduce a second arc-consistency algorithm and analyse its average
time-complexity for the special case where the number of rowsa and the number of columns
b are both two. The algorithm will be calledD. It uses a heuristic to select its support-checks
based on the notion of adouble-support check.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 105

The organisation of the remainder of this section is as follows. First, we shall formally define
the notion of a double-support check and two other related notions. Next, we shall defineD
and analyse it for the two by two problem under consideration. As part of our analysis, we
will identify three reasons which, from an intuitive point of view, suggest that arc-consistency
algorithms should prefer double-support checks to other checks at domain-level.

Definition 7.11 (Zero-Support Check). Let M be ana by b matrix. A support-checkM ?
ij is

called azero-support checkif, just before the check was carried out, the row-support status ofi
and the column-support status ofj were known.

A zero-support check is a support-check from which nothing new can be learned about the
support of a matrix. Good arc-consistency algorithms should therefore never carry out zero-sup-
port checks.

Definition 7.12 (Single-Support Check).Let M be ana by b matrix. A support-checkM ?
ij is

called asingle-support checkif, just before the check was carried out, the row-support status of
i was known and the column-support status ofj was unknown, or vice versa.

A successful single-support checkM ?
ij leads to new knowledge about one thing. Either it

leads to the knowledge thati is in the row-support ofM where this was not known before the
check was carried out, or it leads to the knowledge thatj is in the column-support ofM where
this was not known before the check was carried out.

Definition 7.13 (Double-Support Check).Let M be ana by b matrix. A support-checkM ?
ij

is called adouble-support checkif, just before the check was carried out, both the row-support
status of ofi and the column-support status ofj were unknown.

A successful double-support check, sayM ?
ij, leads to new knowledge about two things. It

leads to the knowledge thati is in the row-support ofM and thatj is in the column-support of
M where neither of these facts was known to be true just before the check was carried out.

Single-support checks, provided they are successful, lead to knowledge about one new thing
at the price of one support-check. Double-support checks, provided they are successful, lead to
knowledge about two new things at the price of one support-check. On average it is just as likely
that a double-support check will succeed as it is that a single-support check will succeed—in both
cases one out of two checks will succeed on average. The potential payoff of a double-support
check is twice as large that that of a single-support check. This is our first indication that at
domain-level arc-consistency algorithms should prefer double-support checks to single-support
checks.

Our second indication that arc-consistency algorithms should prefer double-support checks to
single-support checks is the insight that in order to minimise the total number of support-checks
it is a necessary condition to maximise the number of successful double-support checks.

Later in this section we will point out a third indication—more compelling than the previ-
ous two—that arc-consistency algorithms should prefer double-support checks to single-support
checks.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 106

Definition 7.14 (Double-Support Arc-Consistency Algorithm). Let a andb be positive inte-
gers andM ∈Mab. Thedouble-supportarc-consistency algorithm is the algorithmD defined in
Figure 7.3.

The strategy used byD is a bit more complicated than that ofL. It will first try to use
double-support checks to find support for its rows in the lexicographical order on the rows. It
does this by finding for every row the lexicographically smallest column whose support-status is
not yet known. When there are no more double-support checks left,D will use single-support
checks to find support for those rows whose support-status is not yet known and then find support
for those columns whose support status is still not yet known. When it seeks support for a
row/column, it tries to find it with the lexicographically smallest column/row that is not yet
known to support that row/column.

We have depicted the traces ofD in Figure 7.4. It may not be immediately obvious, but the
strategy ofD is more efficient than that ofL. The reason for this is as follows. There are two
traces whose length is shorter thanab = 4. There is one such trace whose length isl1 = 2 and
one such trace whose length isl2 = 3. The remainings3 traces each have a length ofl3 = ab.
Using the Trace Theorem we can use these findings to determine the number of support-checks
that are saved on average. The average number of savings ofD are given by(s1 × (ab − l1) ×
2ab−l1 + s2× (ab− l2)× 2ab−l2 + s3× (ab− l3)× 2ab−l3)/2ab = (2× 22 + 1× 21 + 0)/24 = 5/8.
This saves1/4 checks more on average thanL.

It is important to observe thatl1 has a length of only two and that it is the result of a se-
quence of two successful double-support checks. It is this trace which contributed the most to
the savings. As a matter of fact, this trace by itself saved more than thetotal savings ofL.

The strategy used byD to prefer double-support checks to single-support checks leads to
shorter traces. We can use the Trace Theorem to find that that the savings of a trace are of the
form (ab − l)2ab−l, wherel is length of the trace. The double-support algorithm was able to
produce a trace that was smaller than any of those produced by the lexicographical algorithm.
To find this trace had a big impact on the total savings ofD. The reason whyD was able to find
the short trace was because it was the result of a sequence of successful double-support checks
and its heuristic forces it to use as many double-support checks as it can. Traces which contain
many successful double-support checks contribute much to the total average savings. This is
our third and last indication that arc-consistency algorithms should prefer double-support checks
over single-support checks.

7.3.3 A First Comparison ofL andD
In this section we have compared the average time-complexity of the lexicographical algorithm
L and the double-support algorithmD for the case where the size of the domains is two. We have
found that the double-support algorithm was more efficient on average than the lexicographical
algorithm for the problem under consideration.

We have been able to identify three reasons which, from an intuitive point of view, suggest
that arc-consistency algorithms should prefer double-support checks to single-support checks.
The first reason is that a double-support check has a pay-off which is twice as much. If a dou-

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 107

functionD(M,a, b) :
/* initialisation */
row-support:= ∅;
column-support:= ∅;
forall i ∈ { 1, . . . , a } do forall j ∈ { 1, . . . , b } doCij :=unknown; od; od;
forall i ∈ { 1, . . . , a } do

/* try to establish support fori using double-support checks */
j := 0;
while (j < b) and(i /∈ row-support) do

/* try to find lexicographically smallestj that supportsi */
j := j + 1;
if (j /∈ column-support) then
Cij := Mij ;
if (Cij = 1) then

row-support:= row-support∪ { i };
column-support:= column-support∪ { j };

fi;
fi;

od;
od;
forall i ∈ { 1, . . . , a } \ row-support do

/* try to establish support fori using single-support checks */
j := 0;
while (j < b) and(i /∈ row-support) do

/* try to find lexicographically smallestj that supportsi */
j := j + 1;
if (Cij = unknown) then
Cij := Mij ;
if (Cij = 1) then

row-support:= row-support∪ { i };
fi;

fi;
od;

od;
forall j ∈ { 1, . . . , b } \ column-support do

/* try to establish support forj using single-support checks */
i := 0;
while (i < a) and(j /∈ column-support) do

/* try to find lexicographically smallesti supportingj */
i := i+ 1;
if (Cij = unknown) then
Cij := Mij ;
if (Cij = 1) then

column-support:= column-support∪ { j };
fi;

fi;
od;

od;
return(row-support, column-support);

od;

Figure 7.3: The double-support algorithmD.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 108

1

1

1

1

0

1

1 0

1 1

1 0

1 0

1 0

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

Figure 7.4: Traces ofD. Total number of support-checks is16× 4− 4× 2− 2× 1 = 54.

ble-support check is successful two things are learned in return for only one support-check, as
opposed to only one new thing for a successful single-support check. The second reason is that
it is a necessary condition to maximise the number of successful double-support checks in order
to minimise the total number of support-checks. The third and last reason is that the average
savings of a trace are of the form(ab − l)2−l, wherel is the length of the trace. The shorter the
trace, the bigger the savings. Only traces that contain many successful double support-checks
can become very small and thus lead to big savings. To find many such traces requires a heuristic
which gives preference to double-support checks.

In the following sections we will provide solid mathematical evidence that the strategy used
byD is superior to that used byL.

7.4 Average Time-Complexity ofL
In this section we shall investigate the average time-complexity of the lexicographical algorithm.
The organisation of this section is as follows. First, we shall define the notions ofleft andright
support-checks. Next, we shall determine the average time-complexity ofL by computing the
average number of left and right support-checks ofL and use them to establish an exact formula
for the average time-complexity ofL. Finally, we shall determine simple upper and lower bounds
for the average time-complexity ofL.
L establishes its support in two phases. In its first phaseL tries to establish its row-support.

In its second phaseL carries out the remaining work to find the column-support. In the following,
we will call the checks that are carried out in the first phase theleft support-checks. The checks
that are carried out in the second phase will be called theright support-checks.

The following lemma will be useful in our derivation of the average time-complexity for left
support-checks further on.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 109

Lemma 7.15.Let b be a positive integer. Then

b∑
c=1

c2c = 2 + (b− 1)2b+1.

Proof. Let f(b) =
∑b

c=1 c2
c, and letg(b) = 2 + (b− 1)2b+1. We have to prove thatf(b) = g(b)

for all positive integersb. We havef(1) = g(1) = 2. For every positiveb we have:

f(b+ 1)− f(b) = (b+ 1)2b+1

= b2b+1 + 2b+1

= b2b+2 − (b− 1)2b+1

= 2 + ((b+ 1)− 1)2(b+1)+1 − (2 + (b− 1)2b+1)

= g(b+ 1)− g(b).

Sincef(1) = g(1) andf(b + 1) − f(b) = g(b + 1) − g(b) for every b > 1 it follows that
f(b) = g(b) for all b > 0.

The following relatesb and the sum of the left support-checks of a row of lengthb.

Lemma 7.16 (Left Support-Checks for Single Rows).Letb be a positive integer, letM ∈M1b

be a1 by b matrix, and letLML be the number of support-checks required byL to determine the
row-support ofM . Then ∑

M∈M1b

LML = 2b+1 − 2.

Proof. If a row hasc − 1 leading zeros followed by a one thenc checks have to be carried out.
There are2b−c rows that havec − 1 leading zeros followed by a one. If a row is zero thenb
checks have to be carried out. Therefore, the number of left support-checks isb +

∑b
c=1 c2

b−c.
The remainder of the proof consists of the simplification of this expression.

∑
M∈M1b

LML = b+
b∑
c=1

c2b−c

= b+
b∑
c=0

(b− c)2c

= b+ (
b∑
c=0

b2c)− (
b∑
c=0

c2c)

= b+ b(2b+1 − 1)− (
b∑
c=0

c2c)

= b2b+1 − (b2b+1 − 2b+1 + 2)

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 110

The last equality holds because
∑b

c=0 c2
c =

∑b
c=1 c2

c, which is equal tob2b+1 − 2b+1 + 2 by
Lemma 7.15. The proof ends by observing that

b2b − (b2b+1 − 2b+1 + 2) = 2b+1 − 2.

The following relatesa, b and the sum of the left support-checks of alla by b matrices.

Lemma 7.17 (Left Support-Checks byL). Let a and b be positive integers. LetLML be the
number of support-checks required byL to determine the row-support ofM . Then∑

M∈Mab
LML = a(2− 21−b)2ab.

Proof. We can use Lemma 7.16 to count the number of checks that have to be spent on a row
at a fixed rowr in a matrix. This number is given by2b+1 − 2. For each sequence of lengthb
that consists of ones and zeroes there are exactly2b(a−1) different matrices where this sequence
occurs in the row at the same fixed positionr. Since there area rows and since we can count the
checks spent on each of the different rows independently, the total number of checks spent ona
rows of lengthb is the same asa times the total number of checks spent on one row of lengthb.
Therefore, ∑

M∈Mab
LML = (2b+1 − 2)a2b(a−1)

= a(2− 21−b)2ab,

which ends the proof.

The following lemma provides a lower bound for any arc-consistency algorithm.

Lemma 7.18 (Lower Bound). Leta andb be positive integers, and letA be any arc-consistency
algorithm then

max(a, b)(2− 21−min(a,b)) ≤ avgA(a, b).

Proof. Assumeb ≤ a. It is obvious thatavgA(a, b) is at least as much as the average number
of support-checks that have to be carried out to find the row-support. The average number of
support-checks to find the row-support are at leasta(2 − 21−b) (the number of left support-
checks). The case fora < b is analogous.

The following relatesa, b and the sum of the right support-checks of alla by b matrices.

Lemma 7.19 (Right Support-Checks byL). Let a andb be positive integers, letM ∈ Mab be
an a by b matrix, and letRM

L be the number of support-checks required byL to determine the
remainder of the column-support ofM after it has established the row-support ofM . Then

∑
M∈Mab

RM
L = 2ab(21−a(1− b) + 2

b∑
c=2

(1− 2−c)a).

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 111

Proof. A support-check should only be carried out if there are no rowsr < r′ such thatMr′c = 1
andMr′c′ = 0 for 1 ≤ c′ < c and no rows of the formr′′ < r such thatMr′′c = 1. Therefore,

∑
M∈Mab

RM
L =

b∑
c=2

a∑
r=1

2a(b−c)2(r−1)(c−1)(2c − 2)(2c − 1)a−r

=
b∑
c=2

2a(b−c)(2c − 2)(2c − 1)a−1

a∑
r=1

2(r−1)(c−1)(2c − 1)1−r

=
b∑
c=2

2a(b−c)+1(2c−1 − 1)(2c − 1)a−1

a−1∑
r=0

(2c−1/(2c − 1))r. (7.2)

Note that in the inner summation of Equation (7.2) the value ofc is always greater than one.
Therefore,2c−1/(2c − 1) 6= 1 for all the c that are under consideration. The inner summation
turns out to be the sum of a geometric series and we can simplify it as follows:

a−1∑
r=0

(2c−1/(2c − 1))r = (1− 2a(c−1)(2c − 1)−a)(1− 2c−1(2c − 1)−1)−1

= (2c − 1)(2c−1 − 1)−1(1− 2a(c−1)(2c − 1)−a)).

This allows us to continue to simplify Equation (7.2) as follows:

b∑
c=2

2a(b−c)+1(2c−1 − 1)(2c − 1)a−1

a−1∑
r=0

(2c−1/(2c − 1))r

=
b∑
c=2

2a(b−c)+1(2c − 1)a(1− 2a(c−1)(2c − 1)−a))

= 2ab
b∑
c=2

(2(1− 2−c)a − 21−a)

= 2ab(21−a(1− b) + 2
b∑
c=2

(1− 2−c)a),

which concludes the proof of Lemma 7.19.

We are finally in a position where we can determine the average time complexity ofL.

Theorem 7.20 (Average Time Complexity ofL). Leta andb be positive integers. The average
time complexity ofL overMab is given by the functionavgL : N× N 7→ Q, where

avgL(a, b) = a(2− 21−b) + (1− b)21−a + 2
b∑
c=2

(1− 2−c)a. (7.3)

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 112

Proof. Divide the result of the addition of the left and right support-checks ofL by 2ab.

We have verified Theorem 7.20 as follows. For each combination ofa andb such that1 ≤
a, b ≤ 5 we have computed

∑
M∈Mab checksL(M) by applyingL to all a by b constraints and by

keeping track of the total number of support-checks that were required for each combination of
a andb. For each combination ofa andb we have been able to verify that

∑
M∈Mab checksL(M)

was exactly
∑

M∈Mab(L
M
L +RM

L) and thatavgL(a, b) was exactly
∑

M∈Mab checksL(M)/2ab. Our
theoretical results fora by b constraints turned out to be exact, for1 ≤ a, b ≤ 5.

The following proposition will allow us to provide a neat bound foravgL(a, b). The proposi-
tion is adapted from[Flajolet and Sedgewick, 1996, Proposition 7.9, p. 59].

Proposition 7.21 (Longest1-Run). Let L̄a =
∑∞

c=0(1− (1− 2−c−1)a), then

L̄a = log2(a) +
γ

log(2)
− 1

2
+

1

log(2)

∑
c∈Z\{ 0 }

Γ

(
2icπ

log(2)

)
e−2icπ log2(a) + O

(
1√
a

)
.

Here, log2(·) is the base-2 logarithm, log(·) is the natural logarithm,γ ≈ 0.577216 is Euler’s
gamma constant, andΓ(·) is the Gamma function. Thus,L̄a is aboutlog2(a) + 0.332746 asa
becomes large.

The following follows immediately from Proposition 7.21.

Corollary 7.22. LetL̄ba =
∑b

c=0(1−(1−2−c)a), thenL̄ba = L̄a+1 asb becomes large. Therefore,
L̄ba is aboutlog2(a) + 1.332746 asa andb become large.

We are finally in a position to provide a “nice” expression foravgL(a, b).

Corollary 7.23. The average time-complexity ofL is about2a+ 2b− 2log2(a)− 0.665492.

Proof. By Theorem 7.20 we have

avgL(a, b) = a(2− 21−b) + (1− b)21−a + 2
b∑
c=2

(1− 2−c)a

= a(2− 21−b)− b21−a + 2
b∑
c=0

(1− 2−c)a

= a(2− 21−b) + b(2− 21−a) + 2− 2
b∑
c=0

(1− (1− 2−c)a). (7.4)

Notice that ifb becomes large the sum reduces to the sumL̄ba from Corollay 7.22. Therefore,
avgL(a, b) is about2a+ 2b− 2log2(a)− 0.665492.

The bound from Corollay 7.23 is interesting because ifa andb are of the same magnitude
and become large thenlwbL(a, b) is “almost” of the form2a + 2b − 2 log2(a). This seems
to suggest thatL requires about two checks for each of the members in the domains of each

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 113

of the variables. Given that on average every second entry of a matrix is a one, this seems to
suggest thatL cannot use checks that are used to learn about its row-support to also learn about
its column-support and vice versa. Otherwise, the lower bound ofL would not have included
coefficients which are (approximately)2 for both a and b. It is as ifL carries out the checks
to find its row-support on the one hand and the checks to find its column-support on the other
almost completely independently from each other.

We can also explain the results we have obtained for the bound in Corollay 7.23 in the follow-
ing way.L has to establish support for each of itsa rows andb columns except for thel columns
which were found to support a row whenL was establishing its row-support. Therefore,L re-
quires about2a+ 2(b− l) checks on average. To findl turns out to be easy. Assume thata = 2k

for some integerk > 1. On averagea/2 rows will be supported by the first column. From the
remaininga/2 rows on averagea/4 rows will be supported by the second column, . . . , from the
remaining2 rows on average1 will find support with thelog2(a)-th column, i.e.l ≈ log2(a). If
a does not have the special form2k then l will still be about log2(a). This informal reasoning
demonstrates that on averageL will require about2a+ 2b− 2 log2(a) support-checks and this is
almost exactly what we found in Corollay 7.23.

7.5 Average Time-Complexity ofD
In this section we shall derive the average time-complexity ofD. It will turn out that this is a bit
easier than the complexity analysis carried out in the previous section. As part of our analysis
we will demonstrate that ifa + b ≥ 14 thenD requires fewer than two checks more than any
algorithm.

The organisation of this section is as follows. We shall first establish a recurrence equation
for the average time-complexity ofD and from it derive an upper and a lower bound for its
average time-complexity.1

Theorem 7.24 (Average Time Complexity ofD). The average time complexity ofD overMab

is given byavgD : N× N 7→ Q, whereavgD(a, 0) = 0, avgD(0, b) = 0 and

avgD(a, b) = 2 + (b− 2)21−a + (a− 2)21−b + 22−a−b − (a− 1)21−2b

+ 2−b avgD(a− 1, b) + (1− 2−b) avgD(a− 1, b− 1)

if a 6= 0 andb 6= 0.

Proof. Let totD(a, b) =
∑

M∈Mab checksD(M). We shall first show how to obtainavgD(·, ·)
from totD(·, ·). Next we shall show how to obtaintotD(·, ·).

The functiontotD : N× N 7→ N is given bytotD(a, 0) = 0, totD(0, b) = 0 and by

totD(a, b) = (2b+1 − 2)2(a−1)b + 2(a−1)(b−1)((b− 2)2b + 2) + (a− 1)(2b − 1)2(a−2)b+1

+ totD(a− 1, b) + 2a−1(2b − 1) totD(a− 1, b− 1)
1We have tried to apply a similar kind of analysis toD as we did toL but all attempts failed. As will turn out

further on, the decision to use a recurrence equation has made the complexity analysis forD “easy.” Perhaps a
similar approach forLmay result in “easy” proofs as well.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 114

if a > 0 andb > 0. We can obtainavgD(s, t) from totD(s, t) using the fact thatavgD(s, t) =
totD(s, t)/2st.

In the second and last part of the proof we have to demonstrate that the recurrence equation
for totD(·, ·) is correct. The proof turns out to be easy when compared with the lexicographical
case.

Note thattotD(1, b) = b2b andtotD(a, 1) = a2a and for both cases, the recurrence equation
is satisfied. Assume that botha andb are greater than one, then:

totD(a, b)

= (2b+1 − 2)2(a−1)b + 2(a−1)(b−1)((b− 2)2b + 2) + (a− 1)(2b − 1)2(a−2)b+1

+ totD(a− 1, b) + 2a−1(2b − 1) totD(a− 1, b− 1).

The following four points explain the purpose of each of the terms in the equation.

1. The term(2b+1 − 2)2(a−1)b corresponds to the effort spent to find the smallestj such that
M1j = 1, where the effort is over all matrices inMab. Lemma 7.16 states that the such
effort spent on a row withb columns is2b+1 − 2. The total number of checks is therefore
given by(2b+1− 2)2(a−1)b. The factor2(a−1)b accounts for the fact that the number ofa by
b matrices that have the same first row is2(a−1)b.

2. If the first row was zero—there is one such case—then we have to computetotD(a− 1, b).

3. If the first row was non-zero—there are2b − 1 such rows—we have to computetotD(a−
1, b−1). Let j be the smallest positive integer such thatM1j = 1. The factor2a−1 accounts
for the column belowM1j that is not checked in the recursive case.

4. “After” the recursive application the following two independent tasks have to be carried
out.

(a) For every columnj for which no one could be found in the recursive case the check
M ?

1j has to be carried out. The following is an illustration of this case.
∗ · · · ∗ 1 ∗ · · · ∗

0
...
0


The term2(a−1)(b−1)((b− 2)2b + 2) counts the number of these checks.

(b) If the first row is non-zero and ifj is the column for which it was found out that
M1j = 1, then for every rowr for which no one could be found in the recursive case,
it has to be checked ifMrj = 1. The following is an illustration of this case.

0 · · · 0 1 ∗ · · · ∗

0 · · · 0 ∗ 0 · · · 0



CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 115

The term(a−1)(2b−1)2(a−2)b+1 counts these checks. The factor(a−1) corresponds
to the number of rows whose index is greater than one and the factor2b − 1 is the
number of non-zero rows of lengthb. The factor2(a−2)b+1 is made up of the factor
21 which accounts forMrj and the factor2(a−2)b which accounts for theMij, where
i 6= 1 andi 6= r.

This ends the proof of Theorem 7.24.

We have verified Theorem 7.24 as follows. For each combination ofa andb such that1 ≤
a, b ≤ 5 we have computed

∑
M∈Mab checksD(M) by applyingD to all a by b constraints and by

keeping track of the total number of support-checks that were required for each combination of
a andb. For each combination ofa andb we have been able to verify that

∑
M∈Mab checksD(M)

was exactlytotD(a, b). Our theoretical results fora by b constraints turned out to be exact, for
1 ≤ a, b ≤ 5.

Theorem 7.25 (Upper Bound for Average Time-Complexity ofD). Let a and b be positive
integers such thata+ b ≥ 14. An upper bound for the average time-complexity ofD overMab is
given byupbD : N× N 7→ Q, where

upbD(a, b) = 2 max(a, b) + 2 (7.5)

−(2 max(a, b) + min(a, b))2−min(a,b)

−(2 min(a, b) + 3 max(a, b))2−max(a,b).

Proof. We shall prove this by induction ona + b. LetP(i) be true if and only ifi ≥ 14 and for
all positive integersa andb such thati = a+ b we haveavgD(a, b) ≤ upbD(a, b).

We shall first verify the cases wherea = 1 or b = 1 and then tackle the more general case.
Let b = 1, then

avgD(a, b)− upbD(a, b) = avgD(a, 1)− upbD(a, 1)

= a− (2a+ 2− (2a+ 1)/2− (2 + 3a)2−a)

= 21−a + 3a/2−a − 3/2.

This means that ifa becomes greater than2 thenavgD(a, 1) ≤ upbD(a, 1). The case where
a = 1 is similar.

We have verified that for all integers1 < a and1 < b satisfying14 ≤ a + b ≤ 15 it is true
thatavgD(a, b) ≤ upbD(a, b). In other words,P(14) andP(15) are true.

Assume thatP(i − 2) andP(i − 1) are true for some integeri ≥ 16. We must prove that
P(i) must hold as well. To do this we must prove that for all positive integersa andb such that
i = a + b we haveavgD(a, b) ≤ upbD(a, b). We already know that ifa = 1 or b = 1 then
P(a+ b) holds. Therefore, a proof for the case wherea > 1 andb > 1 will suffice.

Let a, andb be any two integers such thata > 1, b > 1 andi = a + b. There are two cases:

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 116

either1 < b < a or 1 < a ≤ b. Assume1 < b < a then

avgD(a, b)− upbD(a, b)

= 2 + 22−a−b + (b− 2)21−a + (a− 2)21−b − (a− 1)21−2b

+2−b avgD(a− 1, b) + (1− 2−b) avgD(a− 1, b− 1)− upbD(a, b)

≤ 2 + 22−a−b + (b− 2)21−a + (a− 2)21−b − (a− 1)21−2b

+2−b upbD(a− 1, b) + (1− 2−b) upbD(a− 1, b− 1)− upbD(a, b)

= (6− 3a)2−a + (6− 3b)2−b − (6− 3b)2−2b.

Sinceb ≥ 2 it must hold that(6 − 3b)2−b ≤ (6 − 3b)2−2b. This allows us to continue our
simplification as follows:

(6− 3a)2−a + (6− 3b)2−b − (6− 3b)2−2b

≤ (6− 3a)2−a + (6− 3b)2−2b − (6− 3b)2−2b

= (6− 3a)2−a

≤ 0,

where the last inequality follows from the fact thata ≥ 2.
Assume that1 < a ≤ b. We can use the same technique as for the case where1 < b < a to

derive the following:

avgD(a, b)− upbD(a, b)

≤ 2 + 22−a−b + (b− 2)21−a + (a− 2)21−b − (a− 1)21−2b

+2−b upbD(a− 1, b) + (1− 2−b) upbD(a− 1, b− 1)− upbD(a, b)

= (6− 3a)2−a + (4− 3b)2−b + (3b− 6)2−2b

≤ (6− 3a)2−a + (6− 3b)2−b + (3b− 6)2−2b

≤ 0.

We have shown that for any integeri ≥ 16 if P(i− 2) andP(i− 1) hold thenavgD(a, b) ≤
upbD(a, b). In other words, for any integeri ≥ 16 it is true thatP(i − 2) ∧ P(i − 1) implies
P(i). We have verified that bothP(14) andP(15) hold. Together this demonstrates thatP(i) is
true for every integeri ≥ 14, which completes our proof.

An important result that follows from Theorem 7.25 is that we can prove thatD is efficient.

Theorem 7.26 (Efficiency).LetA be any arc-consistency algorithm, and leta+ b ≥ 14, then

avgD(a, b)− avgA(a, b) ≤ 2−min(a, b)2−min(a,b) − (2 min(a, b) + 3 max(a, b))2−max(a,b).

Proof. If avgD(a, b) < avgA(a, b) then the theorem is obviously true. IfavgA(a, b) ≤ avgD(a, b)
then it follows from Lemma 7.18 that

max(a, b)(2− 21−min(a,b))

≤ avgA(a, b)

≤ avgD(a, b)

≤ upbD(a, b),

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 117

whereupbD is the upper bound provided by Theorem 7.25. It then follows that

avgD(a, b)− avgA(a, b)

≤ upbD(a, b)− avgA(a, b)

= 2−min(a, b)2−min(a,b) − (2 min(a, b) + 3 max(a, b))2−max(a,b),

which completes the proof.

In other words, for every integeri ≥ 14, for every positive integersa andb satisfyingi =
a+b, and for every arc-consistency algorithmA it is true thatavgD(a, b)−avgA(a, b) < 2. Note
that ifA is more efficient thanD thenavgA(a, b)/ avgD(a, b) goes to one asa+b goes to infinity.

7.6 Comparison ofL andD
In this section we shall compare the average number of support-checks required byL andD.
The comparison will consist of a theoretical evaluation of the average time-complexity ofL and
D and of a comparison of the average number of support-checks for some special cases.

The remainder of this section is organised as follows. In Section 7.6.1 we shall compare the
results obtained from the average time-complexity analysis ofL andD from a theoretical point
of view. In Section 7.6.2 we shall compare the results of the average time required byL andD
for the problem classesMnn, for 1 ≤ n ≤ 20.

7.6.1 A Theoretical Comparison ofL andD
In this section we shall compare the results obtained in Section 7.4 and Section 7.5 from a
theoretical point of view.

We already observed on Page 104 that the minimum number of support-checks required by
L is a + b − 1. In Section 7.5 we have derived an upper bound below2 max(a, b) + 2 for the
average number of support-checks required byD, provided thata + b ≥ 14. If a + b ≥ 14 and
a = b then then the minimum number of support-checks required byL is almost the same as the
average number of support-checks required byD!

Our next observation sharpens the previous observation. It follows almost immediately from
our average time-complexity analysis. It is the observation thatD is a better algorithm thanL
because its upper bound is lower than the bound that we derived forL using Corollay 7.23. When
a andb get large and are of the same magnitude then the difference is about2 min(a, b) which is
quite substantial.

We remarked that it was as ifL carried out the checks to find its row-support on the one hand
and the checks to find its column-support on the other completely independently of each other.

Our most important result is the observation that ifa+b ≥ 14 and ifA is any arc-consistency
algorithm thenavgD(a, b) − avgA(a, b) < 2. To the best of our knowledge, this is the first such
result that has been obtained in the constraint literature.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 118

7.6.2 A Comparison for Some Special Cases

In this section we shall compare the average time required byL andD for the first twenty cases
where the number of rows and the number of columns are the same.

n avgL avgD ratio n avgL avgD ratio
1 1.000 1.000 1.000 11 36.276 23.678 1.532
2 3.625 3.375 1.074 12 40.040 25.688 1.559
3 6.934 6.043 1.147 13 43.821 27.694 1.582
4 10.475 8.623 1.215 14 47.616 29.697 1.603
5 14.093 11.037 1.277 15 51.425 31.699 1.622
6 17.740 13.306 1.333 16 55.245 33.699 1.639
7 21.408 15.472 1.384 17 59.075 35.700 1.655
8 25.095 17.571 1.428 18 62.915 37.700 1.668
9 28.802 19.628 1.467 19 66.763 39.700 1.682

10 32.529 21.660 1.502 20 70.619 41.700 1.693

Table 7.1: Comparison ofavgL(n, n) andavgD(n, n) for n ∈ { 1, . . . , 20 }.

Table 7.1 compares the average time-complexity ofL andD for each of the problem-classes
M

nn, where1 ≤ n ≤ 20. The columnsn correspond to the classMnn. The columnsavgL list
the average number of support-checks required byL. The columnsavgD list the average number
of support-checks required byD. The columns ratio correspond to the ratio betweenavgL and
avgD. The data in Table 7.1 have been obtained with the use of Theorem 7.20 and Theorem 7.24.

It is important to state that the computations havenot been carried out using floating-point
numbers but with arbitrary-precision integers. This is necessary to avoid the loss of precision due
to the enormous differences in the ratios between the absolute values of the numbers occurring
in the formulae for the average number of support-checks required byL andD.

The same data as presented in Table 7.1 are also presented in the form of a graph in Fig-
ure 7.5. The horizontal axis represents the size of the problem classes. A numbern on this axis
corresponds to the class ofn by n matrices. The vertical axis represents the average number of
support-checks required by both algorithms. The solid line in the graph represents the average
number of support-checks spent byL(n, n). The dashed line in the graph represents the average
number of support-checks spent byD(n, n).

The figure clearly demonstrates what was stated before as Theorem 7.24, namely thatavgD
is almost linear in the size of the problems. It furthermore demonstrates that already for small
problem sizesD becomes significantly better thanL and remains so.

In Figure 7.6 we have depicted the graph ofupbD(n, n)− avgD(n, n) for n ∈ { 1, . . . , 20 }.
The position where the graph becomes positive is wheren = 7, i.e. upbD(a, b) − avgD(a, b)
becomes positive whena+ b = 14 which conforms with our analysis in the previous section. As
the size of the problem increases the upper bound seems to remain about0.25 above the average.
This seems to suggest that it is still possible to improve upon the upper bound.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 119

(solid)avgL(n, n)

(dashed)avgD(n, n)

0 5 10 15 20

0

20

40

60

Figure 7.5:avgL(n, n) andavgD(n, n) for n ∈ { 1, . . . , 20 }.

upbD(n, n)− avgD(n, n)

0 5 10 15 20

−1.4
−1.2
−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4

Figure 7.6:upbD(n, n)− avgD(n, n) for n ∈ { 1, . . . , 20 }.

CHAPTER 7. AVERAGE TIME-COMPLEXITY FOR DOMAIN-HEURISTICS 120

7.7 Conclusions and Recommendations

In this work we have studied two domain-heuristics for arc-consistency algorithms for the special
case where there are two variables. We have defined two arc-consistency algorithms which differ
only in the domain-heuristic they use. The first algorithm, calledL, uses a lexicographical heuris-
tic. The second algorithm, calledD, uses a heuristic which gives preference to double-support
checks. We have presented a detailed case-study of the algorithmsL andD for the case where
the size of the domains of the variables is two. Finally, we have carried out a careful average
time-complexity analysis forL andD.

We have defined the notion of atraceand have demonstrated the usefulness of this notion. In
particular we have shown that the average savings of a trace are(ab− l)2−l, wherel is the length
of the trace anda andb are the sizes of the domains of the variables.

As part of our detailed case-study we have presented three good reasons why arc-consistency
algorithms should prefer double-support checks to other checks. The first reason is that a dou-
ble-support check has a higher pay-off. If a double-support check is successful two things are
learned in return for only one support-check as opposed to only one new thing for a successful
single-support check. The second reason is that it is a necessary condition to maximise the num-
ber of successful double-support checks in order to minimise the total number of support-checks.
The third and last reason is that the savings of a trace are of the form(ab− l)2ab−l, wherel is the
length of the trace.

Our average time-complexity analysis has provided the bound of about2a+ 2b−2 log2(a)−
0.665492 checks foravgL(a, b) for sufficiently largea andb and an upper bound of2 max(a, b)+
2 − (2 max(a, b) + min(a, b))2−min(a,b) − (2 min(a, b) + 3 max(a, b))2−max(a,b) for avgD(a, b),
for a+ b ≥ 14.

Two results follow immediately from the lower bound forL and the upper bound forD. Our
first result is that it clearly shows thatD is the better algorithm of the two. Our second result is the
result that ifA is any arc-consistency algorithm and ifa+b ≥ 14 thenavgD(a, b)−avgA(a, b) <
2. We have proved that2 max(a, b)(1 − 2−min(a,b)) is a lower bound for any arc-consistency
algorithm. Together with our second result this allowed us to demonstrate thatD is “optimal” in
the sense that it is very close to that lower bound.

The work that was started here should be continued in the form of a refinement of our analysis
for the case where only everym-th out of everyn-th support-check succeeds. This will provide an
indication of the usefulness of the two heuristics under consideration when they are used as part
of aMAC-algorithm. Furthermore, we think that it should be worthwhile to tackle the more com-
plicated problem of analysing the case where the constraints are not required to contain only two
variables. Finally, we think that it should be interesting to implement an arc-consistency algo-
rithm which does not repeat support-checks and which comes equipped with our double-support
heuristic as its domain-heuristic.

Chapter 8

Conclusions and Recommendations

8.1 Introduction

In this thesis we have studied algorithms to solve problems occurring in the areas of Constraint
Satisfaction and Gröbner Basis Theory. We have pointed out relationships between on the one
hand notions in Geometry and Gröbner Basis Theory and on the other notions in Constraint
Satisfaction Theory, we have studied domain-heuristics for arc-consistency algorithms, and we
have generalised the chronological backtracking algorithm.

8.2 Gröbner Bases

8.2.1 Conclusion

It is a well known fact that varieties are in one-to-one correspondence with certain kinds of
ideals. An important observation that we have made is that finite constraints are in one-to-one
correspondence with certain kinds of varieties. Constraints are therefore in one-to-one corre-
spondence with certain kinds of ideals.

The relationship between constraints and ideals, allows for the application of algorithms
from Ideal Theory in general and Gröbner Basis Theory in particular toCSPs. To apply these
algorithms we translate aCSPto a generating set of a polynomial ideal, apply the algorithm from
ideal theory, and translate back to aCSP.

We have presented an algorithm to computeCSPs in directionally solved form. The general
construction is as follows. Given an input constraint satisfaction problemC = (X,D,C) we
compute a generating set of the unique radical idealI ⊆ k[X] whose variety is equal to the solu-
tion set ofC. Next, we compute the reduced Gröbner basisG of I with respect to a lexicograph-
ical term order≺ and transformG to a constraint satisfaction problemC ′ which is equivalent to

C. If G = { 1 } then the originalCSPis unsatisfiable and we setC ′ to (X,D,
{
C ′{x }

}
), where

x is the least significant variable ofX with respect to≺ andC ′{x } = ∅. Otherwise, we setC ′ to
the empty set and for every polynomial inG with variablesS ⊆ X we add a constraintC ′S to C ′

121

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 122

which is equal to the intersection of the Cartesian product of the domains of the variables inS
and the common zeros of the polynomials inG whose variables are equal toS.

The algorithm heavily depends on properties of Gröbner bases of ideals with respect to lex-
icographical term orders. If≺ is a lexicographical term order such thatxi ≺ xj if and only if
i < j, then a Gröbner basisG of an idealI ⊆ k[x1, . . . , xn] with respect to≺ contains a generat-
ing set of the elimination idealk[x1, . . . , xm] ∩ I, for 1 ≤ m ≤ n. If I is zero-dimensional then
G contains a polynomial whose leading term with respect to≺ is equal toxαii , for 1 ≤ i ≤ n and
αi > 0. This in its turn guarantees that all common zeros ofk[x1, . . . , xm−1]∩ I can be extended
to all common zeros ofk[x1, . . . , xm]∩ I, for 1 < m ≤ 2. The construction ensures thatC andC ′
are equivalent. The properties of the Gröbner basis ensure thatC ′ is in directionally solved form
with respect to≺.

With a minor change, the algorithm can also be used to computeCSPs which are solved with
respect to all elimination orders.

8.2.2 Recommendations

The view of constraints as varieties allowed for the application of algorithms from Gröbner basis
theory. The application of these algorithms is motivated by properties of elimination ideals
I ∩ k[S] whose common zeros are the projections of the solutions of the inputCSPonto the
variables inS. This resulted in a better insight into the relationship betweenCSPs and these
ideals.

It should be interesting to investigate such relationships further. In particular, it should be
interesting to investigate the relationship between Gröbner basesG with respect to term orders
which are not necessarily lexicographical and the varieties (constraints) of subsets ofG. Perhaps,
this may lead to more general consistency and search algorithms.

8.3 Arc-Consistency

8.3.1 Conclusion

We have studied existing and new arc-consistency algorithms for binaryCSPs. We have—for
the first time—presented experimental and theoretical results which clearly indicate that do-
main-heuristics can influence the performance of arc-consistency algorithms. We have devel-
oped a new domain-heuristic which has proved itself superior to other existing heuristics both in
an experimental and in a theoretical setting. The domain-heuristic is a double-support heuristic.
It seeks to maximise the number of values for which it can find support per support-check. We
observed that it is necessary to maximise the number of values for which new support is found
per check in order to minimise the total number of checks.

We have used the double-support heuristic to create a novel arc-consistency algorithm for
binaryCSPs. The algorithm is a cross-breed betweenAC-3 andDEE. It maintains the worst-case
time-complexity and space-complexity ofAC-3. Our experimental results suggest that despite
the fact that the hybrid repeats support-checks it is more efficient than the current state-of-the-art

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 123

algorithms which do not repeat support-checks. At the expense of a worse space-complexity
and with minor changes the algorithm can be turned into an algorithm which remembers sup-
port-checks so as to avoid repeating them. With this improvement the algorithm should perform
even better.

Arc-consistency algorithms which do not repeat support-checks all have the same worst-case
time-complexity. It is only by studying the average time-complexity of such algorithms that
the best such algorithm can be identified. Good arc-consistency algorithms have to be good on
average.

Prompted by the success of the new double-support heuristic, we have studied its average
time-complexity and that of a lexicographical domain-heuristic for the case where there are only
two variables in theCSP. The main results of the time-complexity analysis are two-fold. The
first result is that lexicographical heuristic is about two times less efficient on average than the
double-support heuristic for sufficiently large domain sizes. A second result is that the dou-
ble-support heuristic is nearly optimal for sufficiently large domain sizes; should better heuris-
tics exist then they can only be “marginally” better. We have discussed the consequences of the
decision to study2-variableCSPs. Our informal discussion suggests that we can probably study
domain-heuristics by studying2-variableCSPs.

8.3.2 Recommendations

It should be interesting to implement an efficient arc-consistency algorithm which uses the dou-
ble-support heuristic and does not repeat support-checks, and to compare it againstAC-7. The
average-case time-complexity analysis of the lexicographical and the double-support heuristic
have provided insight into necessary properties of good arc-consistency algorithms for the case
when there are two variables in theCSP. These results should be generalised for the case when
there are more variables in theCSP. Many consistency algorithms use underlying lexicograph-
ical domain-heuristics. The notion of a double-support check for arc-consistency algorithms
(2-consistency algorithms) may have a generalisation fork-consistency algorithms. It should be
interesting to study such generalisations. If they exist, they may bring higher-order consistency
algorithms into the realm of feasibility.

8.4 Generalised Backtracking

8.4.1 Conclusion

As laid out before, constraints are in essence varieties, i.e. constraints are geometrical objects
which, in their turn, correspond to certain kinds of polynomial ideals. This suggests that con-
straints have “degrees” similar to the (total) degrees of polynomials. We have provided a defini-
tion of the degree of a set of variables in a constraint and provided an algorithm which uses this
notion to partition constraints in a way which is reminiscent to factorisations of polynomials.

We have presented Proposition 5.5 which states that ifCS is a constraint, ifκ is a cover ofCS,
and ifC = (X,D,C) is aCSPsuch thatCS ∈ C, then the solutions ofC are equal to the union

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 124

of the solutions of the members of{ (X,D, { c } ∪ (C \ {CS })) : c ∈ κ }. Since partitions are
covers, the proposition also applies to partitions.

We have shown that at the lowest level, backtracking implicitly uses the proposition for a
unary constraintCS (the domain of the current variable) and for the unique maximal partition
of CS. Partitions are called linear if their members are linear. Maximal partitions of unary
constraints are linear. The (local) branching factor of chronological backtrack search is equal to
the cardinality of the linear partition of aunaryconstraint (the domain of the current variable).
We have generalised this notion of branching factor to that of ageneralised branching factor(the
cardinality) of a linear partition ofanyconstraint.

We have used our insight into the properties of linear partitions to construct a generalisation
of the chronological backtracking algorithm. It is a generalisation in the sense that it can use
Proposition 5.5 foranykind of constraintCS.

The use of a linear partitionπg of an arc-consistent binary constraint in generalised back-
track search is similar to the use of the linear partitionπc of a unary constraint in chronological
backtrack search. In chronological backtrack search, the members ofπc are in one-to-one corre-
spondence with the branches of the current node in the search tree and each member ofπc (each
branch) allows for the elimination of the current variable. In generalised backtrack search, the
members ofπg are in one-to-one correspondence with the branches of the current node in the
search tree and each member ofπg (each branch in the search tree) allows for the elimination of
a variable.

We have presented a function which maps a binary arc-consistent constraintC{x,y } to a
linear partitionπ of C{x,y } such that the generalised branching factor ofπ does not exceed
min(|D(x)|, |D(y)|) but may be smaller. With the use of this function, generalised backtrack-
ing can always obtain the same generalised backtracking factor as chronological backtracking
and may obtain smaller generalised branching factors. Indeed, the application of the generalised
backtracking algorithm to some large problems from the literature demonstrated that a significant
reduction of the generalised branching factor can be obtained.

8.4.2 Recommendations

We have presented a few results of the application of a toy implementation of the generalised
backtracking algorithm to some large problems from the literature. To investigate the usefulness
of the generalised backtracking approach it is necessary to implement a version that attempts to
minimise the number of support-checks. The performance of this algorithm should be compared
empirically against other backtrack variants for a vast range of problems. The empirical investi-
gation should be complemented by a theoretical evaluation of the efficiency of these algorithms.
The empirical and theoretical comparisons should consist of comparisons of the average number
of support-checks that are required for the different algorithms and comparisons of the average
generalised branching factor.

Bibliography

[Adams and Loustaunau, 1994] W. Adams and P. Loustaunau.An Introduction to Gröbner
Bases. Graduate Studies in Mathematics. American Mathematical Society, 1994.

[Aiba and Hasegawa, 1992] A. Aiba and R. Hasegawa. Constraint logic programming system:
CAL, GDCC and their constraint solvers. In Institute for New Generation Computer Technol-
ogy (ICOT), editor,Proceedings of the International Conference on Fifth Generation Com-
puter Systems. Volume 1, pages 113–131. IOS Press, 1992.

[Aiba et al., 1988] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, and R. Hasegawa. Constraint logic
programming language CAL. InProceedings International Conference on Fifth Generation
Computer Systems, Tokyo, Japan, Dec 1988, pages 263–76. Ohmsha Publishers, 1988.

[Apt, 1997] K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[Arnon and Mignotte, 1988] D.S. Arnon and M. Mignotte. On mechanical quantifier elimination
for elementary algebra and geometry.Journal of Symbolic Computation, 5(1/2):237–260,
1988.

[Arnon, 1988] D.S. Arnon. Bibliography on algorithms in real algebra geometry.Journal of
Symbolic Computation, 5(1&2):267–274, 1988.

[Baader and Siekmann, 1993] F. Baader and J.H. Siekmann.Unification Theory, pages 41–125.
Oxford University Press, 1993.

[Becker and Weispfenning, 1993] T. Becker and V. Weispfenning.Gröbner BasesA Computa-
tional Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, 1993.

[Benhamou and Granvilliers, 1996] F. Benhamou and L. Granvilliers. Combining local consis-
tency, symbolic rewriting and interval methods. InProceedings of the third International
Conference on Artificial Intelligence and Symbolic Mathematical Computation (AISMC’96),
Steyr, Austria, 1996. Springer-Verlag.

[Benhamouet al., 1994] F. Benhamou, D. McAllister, and P. van Hentenryck. CLP(Intervals)
revisited. InInternational Symposium on Logic Programming, pages 124–138. MIT Press,
1994.

125

BIBLIOGRAPHY 126

[Benhamou, 1995] F. Benhamou. Interval constraint logic programming. In A. Podelski, editor,
Constraint Programming: Basics and Trends, number 910 in Lecture Notes in Computer
Science, pages 1–21. Springer-Verlag, 1995.

[Bessièreet al., 1995] C. Bessière, E.C. Freuder, and J.-C. Régin. Using inference to reduce arc
consistency computation. In C.S. Mellish, editor,Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI’95), volume 1, pages 592–598, Montréal,
Québec, Canada, 1995. Morgan Kaufmann Publishers, Inc., San Mateo, California, USA.

[Bessièreet al., 1999] C. Bessière, E.G. Freuder, and J.-C. Régin. Using constraint metaknowl-
edge to reduce arc consistency computation.Artificial Intelligence, 107(1):125–148, 1999.

[Boegeet al., 1986] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving systems
of algebraic equations by calculating Groebner bases.Journal of Symbolic Computation,
2(1):83–98, 1986.

[Bowen and Bahler, 1991] J.A. Bowen and D. Bahler. Free logic in constraint processing. Tech-
nical report, Department of Computer Science, North Carolina State University, 1991.

[Bratko, 1986] I. Bratko. PROLOG Programming for Artificial Intelligence. Addison Wesley,
1986.

[Buchberger and Hong, 1991] B. Buchberger and H. Hong. Speeding-up quantifier elimination
by Gröbner bases. Technical Report 91-06, RISC-Linz, Johannes Kepler University, Linz,
Austria, 1991.

[Buchberger, 1985] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal
theory. In R. Bose, editor,Multidimensional Systems Theory, Mathematics and Its Applica-
tions, chapter 6, pages 184–232. D. Reidel Publishing Company, 1985.

[Buchberger, 1987] B. Buchberger. History and basic features of the critical-pair/completion
procedure.Journal of Symbolic Computation, 3(1&2):3–38, 1987.

[CELAR, 1994] CELAR. Radio link frequency assignment problem benchmark,
ftp://ftp.cs.city.ac.uk/pub/constraints/csp-benchmarks/celar ,
1994.

[Collins and Hong, 1991] G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition
for quantifier elimination.Journal of Symbolic Computation, 12(3):299–328, 1991.

[Colmerauer, 1984] A. Colmerauer. Equations and inequations on finite and infinite trees. In
Institute for New Generation Computer Technology, editor,Proceedings of the International
Conference on Fifth Generation Computer Systems, pages 85–99, 1984.

[Colmerauer, 1987] A. Colmerauer. Introduction to Prolog III. In Commission of the Euro-
pean Communities, Directorate-General Telecommunications, Information Industries, and In-
novations, editors,Proceedings of the Fourth Annual ESPRIT Conference, pages 611–629,
1987.

BIBLIOGRAPHY 127

[Colmerauer, 1990] A. Colmerauer. An introduction to Prolog III.Communications of the ACM,
33(7):69–90, 1990.

[Coxet al., 1996] D. Cox, J. Little, and J. O’Shea.Ideals, Varieties, and AlgorithmsAn Intro-
duction to Computational Algebraic Geometry and Commutative Algebra. Springer, 1996.

[Coxet al., 1997] D. Cox, J. Little, and J. O’Shea.Using Algebraic Geometry. Springer, 1997.
preprint.

[Czapor, 1989] S.R. Czapor. Solving algebraic equations: Combining Buchberger’s algorithm
with multivariate factorization.Journal of Symbolic Computation, 7(1):49–54, 1989.

[Dantzig, 1963] G.B. Dantzig. Linear Programming and Extensions. Princeton, New-Jersey,
1963.

[David, 1995] P. David. Using pivot consistency to decompose and solve functional csps.Jour-
nal of Artificial Intelligence Research, 2:447–474, May 1995. AI Access Foundation and
Morgan Kaufmann Publishers.

[Dechter and Dechter, 1987] A. Dechter and R. Dechter. Removing redundancies in con-
straint networks. InProceedings of the Sixth National Conference on Artificial Intelligence
(AAAI’87), pages 105–109, 1987.

[Dechter and Frost, 1999] R. Dechter and D. Frost. Backtracking algorithms for constraint sat-
isfaction problems. Technical report, University of California, Irvine, 1999.

[Dechter and Meiri, 1989] R. Dechter and I. Meiri. Experimental evaluation of preprocessing
techniques in constraint satisfaction problems. In N.S. Sridharan, editor,Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence (IJCAI’89), pages 271–277.
Morgan Kaufmann, 1989.

[Dechter and Pearl, 1988a] R. Dechter and J. Pearl. Network-based heuristics for constraint-
satisfaction problems.Artificial Intelligence, 34(1):1–38, 1988.

[Dechter and Pearl, 1988b] R. Dechter and J. Pearl. Tree-clustering schemes for constraint-
processing. InProceedings of the Seventh National Conference on Artificial Intelligence
(AAAI’88), pages 150–154, Saint Paul, Minnesota, USA, 1988. AAAI Press/MIT Press.

[Dechter and van Beek, 1995] R. Dechter and P. van Beek. Local and global relational
consistency—summary of recent results. In U. Montanari and F. Rossi, editors,PPCP, num-
ber 976 in Lecture Notes in Computer Science, pages 240–257. Springer, 1995.

[Dechter and van Beek, 1997] R. Dechter and P. van Beek. Local and global relational consis-
tency.Theoretical Computer Science, 173(1):283–308, 1997.

[Dechter, 1990a] R. Dechter. Enhancement schemes for constraint processing: Backjumping,
learning, and cutset decomposition.Artificial Intelligence, 41:273–312, 1990.

BIBLIOGRAPHY 128

[Dechter, 1990b] R. Dechter. From local to global consistency. In P.F. Patel-Schneider, editor,
Proceedings of the Eight Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, pages 231–237, 1990.

[Dechter, 1992] R. Dechter. Constraint networks; A survey. In S.C. Shapiro, editor,Encyclope-
dia of Artificial Intelligence, pages 276–285. Wiley, 1992.

[Dolzmann and Sturm, 1995] A. Dolzmann and T. Sturm. Simplification of quantifier-free for-
mulas over ordered fields. Technical Report MIP-9517, Fakultät für Mathematik und Infor-
matik, Universität Passau, 1995.

[Dolzmann and Sturm, 1997a] A. Dolzmann and T. Sturm. Guarded expressions in practice.
Technical Report MIP-9702, Fakultät für Mathematik und Informatik, Universität Passau,
1997.

[Dolzmann and Sturm, 1997b] A. Dolzmann and T. Sturm. Simplification of quantifier-free for-
mulae over ordered fields.Journal of Symbolic Computation, 24(2):209–231, 1997.

[Dolzmannet al., 1996] A. Dolzmann, T. Sturm, and V. Weispfenning. A new approach for
automatic theorem proving in real geometry. Technical Report MIP-9611, Fakultät für Math-
ematik und Informatik, Universität Passau, 1996.

[Flajolet and Sedgewick, 1996] P. Flajolet and R. Sedgewick. The average case analysis of al-
gorithms: Mellin transform asymptotics. Technical Report Research Report 2956, INRIA,
1996.

[Freuder, 1978] E.G. Freuder. Synthesizing constraint expressions.Communications of the
ACM, 21(11):958–966, 1978.

[Freuder, 1982] E.C. Freuder. A sufficient condition for backtrack-free search.Journal of the
ACM, 29(1):24–32, 1982.

[Freuder, 1985] E.C. Freuder. A sufficient condition for backtrack-bounded search.Journal of
the ACM, 32(4):755–761, 1985.

[Freuder, 1993] E.G. Freuder. Exploiting structure in constraint satisfaction problems. In
B. Mayoh, editor,Proceedings NATO ASI on Constraint Programing, NATO Advanced Sci-
ence Instirute Series, pages 51–73. Springer Verlag, 1993.

[Früwirth and Abdonnaher, 1997] T. Früwirth and S. Abdonnaher.Constraint Programming
Grundlagen und Anwendungen. Springer, 1997.

[Gaschnig, 1978] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problems. InProceeding of the Second Biennial Confer-
ence, Canadian Society for the Computational Studies of Intelligence, pages 268–277, 1978.

BIBLIOGRAPHY 129

[Ginsberg and McAllester, 1994] M.L. Ginsberg and D.A. McAllester. GSAT and dynamic
backtracking. In A. Borning, editor,Principles and Practice of Constraint Program-
ming, number 874 in Lecture Notes in Computer Science, pages 243–265. Springer-Verlag,
Berlin/Heidelberg, 1994.

[Ginsberg, 1993] M.L. Ginsberg.Essentials of Artificial Intelligence. Morgan Kaufmann Pub-
lishers, San Mateo, California, 1993.

[Giovini et al., 1991] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. “one sugar
cube, please”, or selection strategies in the Buchberger algorithm. In S. Watt, editor,Proceed-
ings ISSAC’91, pages 49–54. ACM Press, New York, 1991.

[Golomb and Baumert, 1965] S.W. Golomb and L.D. Baumert. Backtrack programming.Jour-
nal of the ACM, 12(4):516–524, 1965. Not Checked.

[Gräbe, 1994] H.-G. Gräbe. On factorized Gröbner bases. Technical Report 6, Institut für Infor-
matik, Universität Leipzig, Germany, 1994.

[Haralick and Elliott, 1980] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems.Artificial Intelligence, 14(3):263–313, 1980.

[Heintzeet al., 1992] N.C. Heintze, J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The
CLPR programmer’s manual version 1.2, 1992.

[Hong and Ratschan, 1995] H. Hong and S. Ratschan. RISC-CLP(Tree(∆)) a constraint logig
programming system with parametric domain. Technical report, RISC-Linz, Johannes Kepler
University, Linz, Austria, 1995.

[Hong and V̆asaru, 1996] H. Hong and D. V̆asaru. Survey on nonlinear optimization. Technical
report, RISC-Linz, Johannes Kepler University, Linz, Austria, 1996.

[Hong, 1991] H. Hong. Comparison of several decision algorithm for the existentional theory
of the reals, 1991.

[Hong, 1992] H. Hong. Non-linear constraints solving over real numbers in constraint logic
programming (introducing RISC-CLP). Technical Report 92-08, RISC-Linz, Johannes Kepler
University, Linz, Austria, 1992.

[Hower, 1995] W. Hower. Constraint satisfaction — algorithms and complexity analysis.Infor-
mation Processing Letters, 55(3):171–178, 1995.

[Jaakola, 1990] J. Jaakola. Modifying the simplex algorithm to a constraint solver. In P. De-
ransart and J. Maluszynski, editors,Proceedings of the Second International Workshop on
Programming Language Implemenation and Logic Programming, pages 89–105, 1990.

[Jaffar and Lassez, 1986] J. Jaffar and J-L. Lassez. Constraint logic programming. Technical
Report 74, Monash University, Department of Computer Science, Clayton, Victoria, Australia,
1986.

BIBLIOGRAPHY 130

[Jaffar and Lassez, 1987a] J. Jaffar and J-L. Lassez. Constraint logic programming. InPro-
ceedings of the ACM Symposium on Principles of Programming Languages, pages 111–119,
1987.

[Jaffar and Lassez, 1987b] J. Jaffar and J-L. Lassez. From unification to constraints. In K. Fu-
rukawa, H. Tanaka, and T. Fujisaki, editors,Proceedings of the Sixth Conference on Logic
Programming, pages 1–18, 1987.

[Jaffar and Maher, 1994] J. Jaffar and M.J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 19 & 20:503–582, 1994.

[Jaffaret al., 1993] J. Jaffar, M.J. Maher, P.J. Stuckey, and R.H.C. Yap. Projecting CLPR con-
straints.New Generation Computing, 11(3,4):449–469, 1993.

[Kapur, 1986] D. Kapur. Using Groebner bases to reason about geometry problems.Journal of
Symbolic Computation, 2(4):399–408, 1986.

[Knuth and Bendix, 1970] D.E. Knuth and P.B. Bendix. Simple word problems in universal
algebras. In J. Leech, editor,Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, Oxford, U. K., 1970.

[Kondrak and van Beek, 1995] G. Kondrak and P. van Beek. A theoretical evaluation of selected
backtracking algorithms. In C.S. Mellish, editor,Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI’95), pages 541–547, 1995.

[Kondrak and van Beek, 1997] G. Kondrak and P. van Beek. A theoretical evaluation of selected
backtracking methods.Artificial Intelligence, 89:365–387, 1997.

[Kutzler and Stifter, 1986] B. Kutzler and S. Stifter. On the application of Buchberger’s algo-
rithm to automated geometry theorem proving.Journal of Symbolic Computation, 2(4):389–
397, 1986.

[Lassezet al., 1988] J-L. Lassez, M.J. Maher, and K. Marriott. Unification revisited. In
M. Boscarol, L. Carlucci Aiello, and G. Levi, editors,Foundations of Logic and Functional
Programming, Workshop Proceedings, Trento, Italy, (Dec. 1986), number 306 in LNCS, pages
67–113. 1988.

[Lassezet al., 1989] J-L. Lassez, K. McAloon, and T. Huynh. Simplification and elimination of
redundant linear arithmetic constraints. InProceedings of the North American Conference on
Logic Programming, page 37ff., Cleveland, USA, 1989.

[Mackworth and Freuder, 1985] A.K. Mackworth and E.C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satisfaction problems.Artificial
Intelligence, 25(1):65–73, 1985.

[Mackworth and Freuder, 1993] A.K. Mackworth and E.C. Freuder. The complexity of con-
straint satisfaction revisited.Artificial Intelligence, 59:57–62, 1993.

BIBLIOGRAPHY 131

[Mackworth, 1977] A.K. Mackworth. Consistency in networks of relations.Artificial Intelli-
gence, 8:99–118, 1977.

[Marriot and Stuckey, 1998] K. Marriot and P.J. Stuckey.Programming with Constraints,An
Introduction. MIT Press, 1998.

[Melenk, 1990] H. Melenk. Solving polynomial equation systems by Groebner methods. CWI
Quarterly 3, 1990.

[Melenk, 1993] H. Melenk. Algebraic soltion of nonlinear equation systems in REDUCE. Tech-
nical report, Conrad-Zuse-Zentrum für Informationstechnik, Berlin, Germany, 1993.

[Mishra, 1993] B. Mishra.Algorithmic Algebra. Springer-Verlag, 1993.

[Mohr and Henderson, 1986] R. Mohr and T. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:225–233, 1986.

[Montanari and Rossi, 1988] U. Montanari and F. Rossi. Fundamental properties of networks
of constraints: A new formulation. In L. Kanal and V. Kumar, editors,Search in Artificial
Intelligence, Springer Series in Symbolic Computation, pages 426–449, 1988.

[Montanari, 1974] U. Montanari. Networks of constraints: Fundamental properties and applica-
tions to picture processing.Information Science, 7:95–132, 1974.

[Mora and Robbiano, 1988] T. Mora and L. Robbiano. The Gröbner fan of an ideal.Journal of
Symbolic Computation, 6(2-3):183–208, 1988.

[Nadel, 1987] B.E. Nadel. The complexity of backtracking and forward checking: Search-order
and instance specific results. Technical Report 88-002, Computer Science Dept., Wayne State
University, Detroit, Michigan, U.S.A. , 1987.

[Nadel, 1989] B.E. Nadel. Constraint satisfaction algorithms.Computational Intelligence,
5(4):188–224, 1989.

[Nilsson and Maluszynski, 1989] U. Nilsson and J. Maluszynski.Logic, Programming and
PROLOG. Wiley & Sons, 1989.

[Older and Benhamou, 1993] W. Older and B. Benhamou. Programming in CLP(BNR). InPo-
sition Papers for the First Workshop on Principles and Practice of Constraint Programming,
pages 239–249, 1993.

[Pesch, 1996] M. Pesch. Factorizing Gröbner bases, 1996.

[Prosser, 1993] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computa-
tional Intelligence, 9:268–299, 1993.

BIBLIOGRAPHY 132

[Renegar, 1992a] J. Renegar. On the computational complexity and geometry of the first-order
theory of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets.
The decision problem for the existential theory of the reals.Journal of Symbolic Computation,
13(3):255–299, 1992.

[Renegar, 1992b] J. Renegar. On the computational complexity and geometry of the first-order
theory of the reals. Part II: The general decision problem. Preliminaries for quantifier elimi-
nation.Journal of Symbolic Computation, 13(3):301–327, 1992.

[Renegar, 1992c] J. Renegar. On the computational complexity and geometry of the first-
order theory of the reals. Part III: Quantifier elimination.Journal of Symbolic Computation,
13(3):329–352, 1992.

[Sabin and Freuder, 1994] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In A.G. Cohn, editor,Proceedings of the Eleventh European Confer-
ence on Artificial Intelligence (ECAI’94), pages 125–129. John Wiley & Sons, 1994.

[Sabin and Freuder, 1997] D. Sabin and E.C. Freuder. Understanding and improving the MAC
algorithm. In G. Smolka, editor,Principles and Practice of Constraint Programming, pages
167–181. Springer Verlag, 1997.

[Sakai and Aiba, 1989] K. Sakai and A. Aiba. CAL: A theoretical background of CLP and its
applications.Journal of Symbolic Computation, 8(6):589–603, 1989.

[Sakai and Sato, 1990] K. Sakai and Y. Sato. Application of ideal theory to boolean constraint
solving. InProceedings Pacific Rim International Conference on Artificial Intelligence, 1990.

[Schrijver, 1996] A. Schrijver.Theory of Linear and Integer Programming. Wiley, 1996.

[Siekmann, 1989] J.H. Siekmann. Unification theory.Journal of Symbolic Computation,
7(3&4):207–274, 1989.

[Smith, 1995] B.M. Smith. A tutorial on constraint programming. Technical Report 95.14,
School of Computer Studies, University of Strathclyde, 1995.

[Sturm and Weispfenning, 1996] T. Sturm and V. Weispfenning. Computational geometry prob-
lems in redlog. Technical Report MIP-9708, Fakultät für Mathematik und Informatik, Uni-
versität Passau, 1996.

[Tarski, 1951] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, 1951. Second edition revisisted, first edition: The RAND Corporation
(1948).

[Tsang, 1993] E. Tsang.Foundations of Constraint Satisfaction. Academic Press, 1993.

[Van Hentenryck and Ramachandran, 1994] P. Van Hentenryck and V. Ramachandran. Back-
tracking without trailing in CLPR(Lin). InProceedings of the ACM SIGPLAN’94 Conference
on Programming Language Design and Implementation (PLDI), pages 349–360, 1994.

BIBLIOGRAPHY 133

[Van Hentenrycket al., 1992] Pascal Van Hentenryck, Yves Deville, and Choh-Man Teng. A
generic arc-consistency algorithm and its specializations.Artificial Intelligence, 57(2–3):291–
321, 1992.

[Wallace and Freuder, 1992] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consis-
tency algorithms. InAI/GI/VI ’92, pages 163–169, Vancouver, British Columbia, Canada,
1992.

[Wallace, 1993] R.J. Wallace. Why AC-3 is almost always better than AC-4 for establishing arc
consistency in CSPs. In R. Bajcsy, editor,Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence (IJCAI’93), pages 239–245, 1993.

[Weispfenning, 1993] V. Weispfenning. A new approach to quantifier elimination for real alge-
bra. Technical Report MIP-9305, Fakultät für Mathematik und Informatik, Universität Passau,
1993.

[Weispfenning, 1994] V. Weispfenning. Parametric linear and quadratic optimization by elim-
ination. Technical Report MIP-9404, Fakultät für Mathematik und Informatik, Universität
Passau, 1994.

[Weispfenning, 1996] V. Weispfenning. Applying quantifier elimination to problems in simula-
tion and optimization. Technical Report MIP-9607, Fakultät für Mathematik und Informatik,
Universität Passau, 1996.

[Weispfenning, 1997] V. Weispfenning. Simulation and optimization by quantifier elimination.
Journal of Symbolic Computation, 24(2):189–208, 1997.

[Winkler, 1984] F. Winkler.The Church-Rosser Property in Computer Algebra and Special The-
orem Proving: An Investigation of Critical-Pair/Completion Algorithms. PhD thesis, Johannes
Kepler University, Linz, Austria, 1984.

List of Symbols

κ cover, page 62

K(S) covers ofS, page 62

deg(CT , S) degree ofS in CT , page 67

d maximum domain size, page 10

IX(I) elimination ideal ofI with respect toX, page 29

gcd(p, q) greatest common divisor ofp andq, page 32

lt≺(p) leading term ofp with respect to≺, page 39

Sx x-layer of some constraintCS, page 71

lc≺(p) leading coefficient ofp with respect to≺, page 39

lm≺(p) leading monomial ofp with respect to≺, page 39

nf≺(G, f) normal form off with respect toG and≺, page 39

π partition, page 62

Π(S) partitions ofS, page 62

2S power set ofS, page 62

projz(t) projection oft ontoz, page 71

IR R-module ofI, page 25

Rxy directed relation betweenx andy, page 84

TX power products of variables inX, page 38

terms(f) terms off , page 39

(X,D,C) constraint satisfaction problem, page 9

134

LIST OF SYMBOLS 135

A×B Cartesian product ofA andB, page 9

C set of constraints, page 9

CS constraint, page 8

D(x) domain ofx, page 8

e number of edges in constraint graph, page 10

R set containing all directed relations, page 84

s ≺ t s precedest with respect to term order≺, page 38

S ⊂ T proper set containment ofS in T , page 25

S ⊆ T set containment ofS in T , page 25

t ∈ CS consistency-check, page 9

u | v u dividesv, page 39

u - v u does not dividev, page 39

VS variety ofCS, page 50

x <lex y x precedesy with respect to lexicographical variable ordering<lex, page 8

X set of variables, page 8

xi variable, page 8

List of Acronyms

AC Arc Consistency.

BNR Bell Northern Research.

CAD Cylindrical Algebraic Decomposition.

CAL Contrainte Avec Logique.

CLP Constraint Logic Programming.

CSP Constraint Satisfaction Problem.

DEE Domain Element Elimination.

DEEB Domain Element Elimination with Backtracking.

FOTR First-Order Theory of the Reals.

MAC Maintain Arc-Consistency.

RISC Research Institute for Symbolic Computation.

RLFAP Radio Link Frequency Assignment Problem.

136

Index

R-module of ideal, 25
S-tuple, 9
·×·, 9
AC-3b, 87
nf≺(G, f), 39
projz(·), 71
terms(f), 39
(xi1 , . . . , xim)-tuple, 9
k-consistency, 13
k-satisfiability, 13
AC-3, 85
AC-7, 85
CAD, 18
DEE, 85
CLP(BNR), 18
CSP, 9, 84

arc-consistent, 85
average tightness of, 90
binary, 10, 84
connected, 14, 84
constraint graph of, 10
decision, 20
density of, 90
equivalence of, 10
finite, 10
in directionally solved form, 46
in globally solved form, 48
inconsistent, 85
satisfiability of, 10
solution, 10
unsatisfiability of, 10

x-layer, 71
MAC, 11
RISC(CLP), 16
FOTR, 17

decision algorithm for, 17

algebraic closure of field, 27
algorithm

bi-directional, 84
Buchberger, 24, 40
completion, 24
critical pair, 24
general purpose, 85
Knuth-Bendix, 24

amalgamation, 68, 69
arc-consistentCSP, 14
arity

of constraint, 9

backtracking
chronological, 64

branching factor
generalised, 73
local, 61

check
consistency-, 84
support-, 84

completeness
of algorithm, 11

consistency, 12
arc-, 85
node-, 84

consistency problem, 41
consistency-check, 9
constraint, 8

bi-linear, 67
binary, 9, 84
degree of, 65, 67
higher order, 9

137

INDEX 138

linear, 67
programming language, 5
quadratic, 67
relationship with variety, 49
satisfaction, 84
sub-linear, 67
ternary, 9
tightness of, 90
unary, 9, 84

constraint component, 5
constraint graph, 10
constraint satisfaction, 9
constraint satisfaction problem, 9,seeCSP
contrainte avec logique, 18,seeCAL
cover, 62

and backtracking, 64
proposition, 63

cylindrical algebraic decomposition,seeCAD

divisor
greatest common, 32

domain size
maximum, 10

extend-and-test, 7
extension of partial solutions, 30

field, 25
algebraic closure of, 27
algebraically closed, 27
perfect, 32

first order theory of the reals,seeFOTR
five queens problem, 58
forest, 14
function

projection, 71

generate-and-test, 7
graph

constraint, 84
Gröbner basis, 39

reduced, 39
universal, 54

heuristic

arc-, 85
domain-, 85
lexicographical queue, 90

ideal, 24
R-module of, 25
consistent, 27
correspondence with variety, 33
dimension of, 31
elimination, 29
finitely generated, 25
generating system of, 25
inconsistent, 27
initial, 43
intersection, 34
intersection theorem, 42
maximal, 29
of variety, 28
product, 35
proper, 25
radical, 31
radical of, 31
sum, 25, 35
vanishing, 28
zero-dimensional, 31

inconsistency, 85

layer, 71
leading coefficient, 39
leading monomial, 39
leading term, 39

membership
ideal, 40

micro-structure, 10
monomial, 39

neighbour, 84
node-consistentCSP, 14
normal form, 39
Nullstellensatz

Hilbert’s Strong, 33
Hilbert’s Weak, 28

number of edges in constraint graph, 10

INDEX 139

partition, 62
and backtracking, 64
linear, 71
maximal, 63

polynomial
irreducible, 32
monic, 32
separable, 32
square-free, 32

power set, 62
programming component, 5
projection

function, 71
propagate-and-generate, 15

reduced terms, 43
relation

directed, 84
ring

Noetherian, 25
polynomial, 25

satisfiability, 10
sound

algorithm, 11
square-free part, 32
strongk-consistency, 13
support, 84

finite, 25
support-check, 9

double, 85, 86
single, 86

term
reduced, 42

term order, 38
lexicographical, 38
total degree, 38

theorem
Hilbert basis, 25

thrashing, 7
traffic lights example, 56
tree

rational, 16

unit, 25

variety, 25, 26
correspondence with radical ideal, 33
of constraint, 50
relationship with constraint, 49

