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Chapter 1

Introduction

1.1 Scope of this Thesis

The idea to program witlzonstraintsfor special purposes has been around since the 1960-s.
This has resulted in the notion ofcanstraint satisfaction probledCSP. CSPs can be used to
specify, represent, and solve many problems occurring in academia and the “real world.”

Grobner Basis Theorgriginates from the 1960-s from Bruno Buchberger's PhD disserta-
tion.! Grobner Basis Theory provides algorithms which generalise the Gaussian Elimination
Algorithm and the Euclidean Algorithm in the sense that the Grobner Basis Algorithms remain
valid if polynomials “become” multivariate and non-linear.

In this thesis we are concerned with algorithms to solve problems occurring in the areas of
Constraint Satisfaction and Grobner Basis Theory. We borrow ideas from Geometry and Ideal
Theory in general and from Grobner Basis Theory in particular. As part of our presentation we
shall point out relationships between notions in Geometry and Grobner Basis Theory on the one
hand and notions in Constraint Satisfaction Theory on the other.

The main contributions of this thesis are as follows:

e Varieties in Geometry are solutions of systems of simultaneous polynomial equations. We
shall point out an important relationship between constraints and varieties: Finite con-
straints are in essence varieties. This relationship opens the door for the application of
algorithms from Grobner Basis Theory to problems occurring in Constraint Satisfaction.
It also allows for the integration of discrete and continuous constraints.

e We shall present an elegant algorithm to compZigs™s in directionally solved form with
respect to a variable ordering and to compoi&Fs which are in globally solved form with
respect to all variable orderings. The algorithm relies heavily on the relationship between
constraints and varieties, the relationship between varietiesamdhingideals and, the
relationship between elimination ideals and Grébner bases with respect to lexicographical
term orders.

1This is not completely true. The theory was established in the 1960-s, whereas the name Grobner Basis was
only adopted by Buchberger in the 1970-s as a tribute to his PhD supervisor Wolfgang Grébner.
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e We shall present a novel arc-consistency algorithm for bi@8¥s which uses a simple
double-support heuristihich can improve any existing arc-consistency algorithm. The
key insight is that in order to minimise the total number of consistency-checks it is nec-
essary to maximise the number of consistency-checks which find (new) support for two
values at a time. Atlomain-leveli.e. after the selection of a constraint that will be used
for the next consistency-check) our heuristic selects a consistency-check which, if suc-
cessful, will increase the number of supported values by as much as possible. We present
experimental results which suggest that the heuristic is, indeed, efficient.

Until recently, it was not known that heuristics which operate at domain-level can have
influence on the performance of arc-consistency algorithms which do not repeat consis-
tency-checks. These results are the first results which demonstrate that heuristics which
operate at domain-level can have a significant influence on the performance of arc-consis-
tency algorithms.

¢ We shall study the average time-complexity of two arc-consistency algorithms which only
differ in their domain-heuristicdor the case where there are only two variables in the
CSP To the best of our knowledge these are the first average time-complexity results for
arc-consistency algorithms to appear in the constraint literature. The heuristics under in-
vestigation are the double-support heuristic and the lexicographical heuristic. The lexi-
cographical heuristic is used for the implementation of most arc-consistency algorithms.
Not only do our results clearly indicate that the double-support heuristic is superior to
the lexicographical heuristic but also indicate that it is efficient in the sense that, should
heuristics exist which are better, then the use of these heuristics can only lead to “marginal”
improvements.

Our average time-complexity results are numbers which can be used to compare the per-
formance of two algorithms. Besides these numbers, we shall also provide good reasons
to explainwhythe double-support heuristic is better.

Finally, we shall provide reasons which justify our choice to study the average time-com-
plexity of domain-heuristics for two-variab@SFs.

¢ We shall present a generalisation of the well known chronological backtracking algorithm.
Our algorithm is a generalisation in the sense that it carangé&ind of constraint (as op-
posed to just unary constraints—the domains of the variables) to decompose a problem into
smaller problems. Our choice will never increase the local branching factor of the search
tree but can make it smaller. We present experimental results of the application of this
algorithm to some large problems known from the literature. The results will demonstrate
that the generalised backtracking algorithm is promising.

1.2 Outline of this Thesis

The outline of the remainder of this thesis is as follows. In Chapter 2, we shall lay out the main
concepts and results of Constraint Satisfaction Theory. Chapter 3 will provide an introduction to
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Grobner Basis Theory. In Chapter 4 we shall present our algorithm to corg@Rein direc-
tionally and globally solved form. In Chapter 5 we shall discuss the “geometry” of constraints
and shall present our generalised backtracking algorithm. In Chapter 6 we shall present the
double-support heuristic and experimental results which indicate that the heuristic can greatly
improve existing arc-consistency algorithms. The average time-complexity results will be pre-
sented in Chapter 7. In Chapter 8 we shall present our conclusion and a discussion for future
research.



Chapter 2

Constraints

2.1 Introduction to Constraints

2.1.1 Introduction

Constraints are ubiquitous in mathematics, in computer science, and in the “real world.” They
provide a convenient framework for the description, representation and solution of many prob-
lems. In this chapter we shall study constraints.

Before providing a detailed description of constraints and their different disguises, we shall
provide a global background to the constraint paradigm. This will be done in the following
sections. They provide a rough taxonomy for the different usages of constraints. In Section 2.1.2
we shall provide a brief introduction toonstraint satisfaction problemdn Section 2.1.3 we
shall describe the main characteristicccofstraint logic programmingThe use oftonstraints
in mathematicsvill be covered in Section 2.1.4. A more detailed presentation, one for each of
the different usages of constraints, can be found in Section 2.2, Section 2.3, and Section 2.4.

2.1.2 Constraint Satisfaction Problems

In this section we shall provide a short introductioncanstraint satisfaction problemsAs
promised in the introduction we shall also study constraint satisfaction problems in greater detail.
This will be done in Section 2.2 where we shall also study search.

Constraint satisfaction problems are used to specify, represent, and solve many interesting
problems involving variables, the domains from which the variables can take their values, and
finally, relations between subsets of the variables. The introduction of the constraint paradigm
has resulted in an enormous diversity of approaches to the solution of a cornucopia of problems.

For the moment it suffices to know that the main characteristics of (finite) constraint satisfac-
tion problems are given by the following list:

¢ A finite Constraint Satisfaction Probler@$P constitutes a set of variables, the domains
of the variables, and constraints between subsets of the variables.

e The domains of the variables are finite and are known in advance.

4
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e A constraintbetween a subset of the variables of th&€SPis a subset of the Cartesian
product of the domains of the variables $h The membership problem of each of the
constraints is decidable as well as tractable. The intuition is that constraints correspond
to relations between subsets of the variables thereby limiting the “assignments” to the
variables that are “allowed.” It can be decided if an assignment is allowed by carrying out
constraint membership tests.

Constraint satisfaction theory will be studied in more detail in Section 2.2.

A constraint programming language a programming language which hasaastraint com-
ponentand aprogramming componeni he constraint componer(tmore commonly referred to
as theconstraint-storg is used to represent the variables, their domains and the constraints. In
addition it provides algorithms to implement strategies to be used before, during, or after search.
Theprogramming componeptrovides a language to define constraint satisfaction problems and,
if the language implements this, annotations to select algorithms to implement certain strategies
during certain stages in the process of solving a problem or transforming it éoj@Emalent
problem. Here, a problem is equivalent to another problem if their solutions are the same.

In the following we shall distinguish between different kinds of constraint programming lan-
guages. Constraint programming languages which only deal with constraint satisfaction pro-
grams will be calleatonstraint satisfaction programming languages

2.1.3 Constraint Logic Programming

Constraint Logic Programmin{CLP) languages are logic programming languages enriched with
constraints. This section provides a short introduction to constraint logic programming. A more
detailed description will be provided in Section 2.3.

Most of the differences between constraint satisfaction problems and constraint logic pro-
gramming originate from constraint logic programming’s roots in logic programming. For exam-
ple, in constraint logic programming—as opposed to constraint satisfaction programming—the
domains of the variables are not always explicitly available. Instead, user-defined predicates can
also indirectly determine the set of values from which the variables can take their values.

Constraints in constraint logic programming are used both as input for and output of queries.
For example, the query

1<=X X<=1

when posed in the constraint logic programming language(R-Lin), will lead to the answer

X = 1. This mayseento be a solution of the inequalities bigstan output constraint, namely

the constraint which only allowX to bel. Because the answer given By P(R-Lin) is notNo

it is understood that the original query is satisfiable and that the returned answer is its equivalent.
Constraint logic programming languages are, in essence, logic programming languages where

unification has been replaced by constraint satisfaction, i.e. the unification algorithm used in logic

programming has been replaced by an algorithm to decide constraint satisfaction.
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2.1.4 Constraints in Mathematics

Another usage of constraints arises in mathematics where certain classes of problems include
variables which have to satisfy certain kinds of equations, inequalities or inequatidhs.
problems are formulae that are universally and/or existentially quantified and contain disjunctive
and conjunctive operators and equations, inequations and inequalities. These kinds of constraints
have been studied by mathematicians for centuries and many kinds of solution techniques have
been developed to deal with them.

2.1.5 Outline

In the remainder of this chapter we shall review in greater detail constraint satisfaction, search,
constraint logic programming, and the use of constraints in mathematics. Due to the nature of the
remainder of this thesis, the emphasis will be on constraint satisfaction and search. Constraint
satisfaction problems and search will be discussed in Section 2.2. We shall discuss the constraint
logic programming paradigm in Section 2.3. We shall not refer to constraint logic programming

in subsequent chapters. Section 2.3 has been included solely for the purposes of comparison and
completeness. In Section 2.4 we shall study selected branches in mathematics which deal with
constraints. We shall present a summary in Section 2.5.

In the following it will be assumed that the reader is familiar with the notions of logic pro-
gramming and (chronological) backtracking. Readers not familiar with logic programming may
wish to consulfNilsson and Maluszynski, 1989; Apt, 1997; Bratko, 1p86 any other book
on logic programming o0PROLOG Readers not familiar with backtracking may wish to consult
[Kondrak and van Beek, 1995; 1997; Nadel, 1989; Dechter and Frost] @@@Sinsberg, 1993;
Tsang, 1998

2.2 Constraint Satisfaction and Search

2.2.1 A Historical Background

The purpose of Section 2.2 is to provide a constraint satisfaction vocabulary and an understanding
of how the use otonsistency algorithmsan improve backtrack search. In this section we shall
provide an introduction to constraint satisfaction and search from a historical perspective. At the
end of this section we shall outline the organisation of the remainder of Section 2.2.

Backtrack Search and Thrashing

There are several methods to find solutions of problems involving constraints and variables the
domains of which are finite and are known in advance. The most commonly used method is
chronological backtrack seardGolomb and Baumert, 1965Backtrack search belongs to the

IHere and in the remainder of this thesis, equalities are formulae of thejformg, strict inequalities are
formulae of the formp < ¢ orp > ¢, inequalities are formulae of the form< ¢ or p > ¢, and inequations are
formulae of the formp # q.
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generate-and-tesamily of solution methods. To solve problems, members of this family use

a strategy to start with an empty partial solution and to recursively generate, i.e. extend, partial
solutions and to carry out tests to see which of these (partial) candidate solutions satisfy the
relevant constraints. The (partial) solutions which violate one or more constraint are omitted
because they cannot contribute to the solution set.

Chronological backtrack search suffers from a short-term memory—total amnesia, really—
and due to the nature of the generate-and-test approach it repeatedly has to rediscover that certain
combinations of values are not compatible. This is what is caliembhing[Mackworth, 1977.

Due to the size of the search-space, thrashing almost always results in the enumeration of an
enormous number of candidate solutions which will never be part of a solution, thus resulting in
very longe execution times.

Consistency

The cause of thrashing is that a problem which is formulatedcasistraint satisfaction problem
usually has a relatively low level aonsistencyRoughly speaking, one problem formulation is
less consistent than another if it leaves more room for partial solutions which do not violate any
of the constraints between subsets of the variables, but which will nevertheless not participate
in any global solution. A formal definition of the notion of consistency will be provided in
Section 2.2.4.

Consistency Algorithms as Preprocessors

Researchers who used chronological backtracking soon discovered that making constraint sat-
isfaction problems more consistent is possible at relatively low cost and generally significantly
improves the performance of backtrack search. After this discovery many researchers started
to useconsistency algorithmas preprocessors to backtracking, i.e. they transformed constraint
satisfaction problems into equivalent constraint satisfaction problems which were guaranteed to
have a certain level of consistency (usually higher than the original level of consistency) and then
they applied backtrackingMackworth, 1977; Gaschnig, 1978; Mackworth and Freuder, 1985;
1993; Mohr and Henderson, 1986; Dechter and Dechter,]1987

Unfortunately, to make problems more consistbatore search does not always prevent
thrashing. Incompatible combinations of values still have to be rediscovered several times during
search, albeit at a later stage.

Consistency Maintenance During Search

Early methods to try to overcome the problem that thrashing still occurs after the application
of consistency algorithms (before searchdintainedcertain levels ofdirectional consistency
during search, i.e. they maintained consistency levels during search which depend on the “di-
rection” of search (the ordering on the variables). An early referendelasalick and El-

liott, 1980 which considers directional consistency methods for the first time. The term di-

2Perhaps extend-and-test would have been a better name.
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rectional consistency is due to Dechf@echter, 1990a(see alsdDechter and Pearl, 1988a;
1988H). Dechter’s application of directional consistency methods isutiset decomposition
where one tries to “transform” the original constraint satisfaction problem into a constraint satis-
faction problem that does not contain “circular dependendigsthter and Meiri, 1999 These
problems can be shown to be solved without much efferéuder, 198R

Note that it is possible—at least in principle—to make a problem completely consistent be-
fore the application of search. In general, this is not the preferred approach because the combined
costs of making the problem entirely consistent and search will normally outweigh the total costs
of search without applying consistency algorithms. Furthermore, to make a problem completely
consistent usually involves the introduction of additional constraints, the majority of which in-
volve many variables and are therefore usually very large.

At the moment this thesis was written it was a trend to maintain certain low levels of consis-
tency during search which were independent of the direction of sé8atiin and Freuder, 1994;
Bessiéreet al,, 1995; Sabin and Freuder, 1997

Organisation

The organisation of the remainder of Section 2.2 is as follows. In Section 2.2.2 we shall provide
definitions ofconstraintg andconstraint satisfaction problemin Section 2.2.3 we shall discuss
chronological backtrack search and some of the problems that arise with this algorithm. We shall
study the concepts cfatisfiabilityand consistencyn Section 2.2.4. In Section 2.2.5 we shall
provide evidence that to maintain a certain level of consistency during search can be worthwhile.
In Section 2.2.6 we shall provide a summary.

The reader who is interested in a more detailed introduction to constraints may wish to con-
sult[Dechter, 1992; Tsang, 1993; Marriot and Stuckey, 1998; Friwirth and Abdonnaher, 1997;
Smith, 1995.

2.2.2 Constraints

This section is an introduction toonstraints constraint satisfaction problemshe notion of
satisfiability, and other notions that will allow us to reason about (properties of) constraint satis-
faction problems.

Constraints

In the following, letn be a positive integer, leX = {x,,...,z, } be a set of variables, and
let - <« - be the “usual” lexicographical ordering on the variablesXin It is assumed that
z; <iex Tj, ifand only ifi < j, for1 < 4,5 < n. Associated with each variable is @d®main
The domain of; is denotedD(z;).

Definition 2.1 (Constraint). Let S = { z;,,...,z;,, } be a non-empty set of variables. A €&
is called aconstraintbetween the variables of if

Cs € X, ,D(x,,),
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where- X - denotes the Cartesian product operator.

Definition 2.2 (Arity). Thearity of a constraint’y is given by the cardinality of. A constraint
whose arity isn is called ann-ary constraint.

A constraint is calledinaryif its arity is one,binary if its arity is two, andternaryif its arity
is three. A constraint the arity of which is higher than two is usually referred tdhaghar order
constraint.

A constraintC's contains those and only those tuples that represent the “assignments” to
the variables inS that are allowed by the constraint. The notion of a tuple being allowed by a
constraint will be formalised in the following paragraphs with the introduction of the notion of
constraint satisfaction

Constraint Satisfaction

In the following, tuples will play the role of “assignments” to variables. ket { z;,,...,x;, }
be a non-empty set of variables. Antuple (or(z;,,...,z;, )-tuple) is understood to be an
“assignment” to( z;,,...,x;, ). An S-tuple (v;,,...,v;, ) is the simultaneous “assignment”
Tip = Uiy, - T4, = v;, . Itwill be implicitly assumed that if v;,, ..., v;,, ) is anS-tuple then
the indicesiy, ..., i, comply with the ordering <., - on the variables;,, ..., z; . If z;isa
variable then{ z; }-tuples will also be referred to as-tuples.

Definition 2.3 (Constraint Satisfaction). Let .S andT" be non-empty sets of variables, and let
Cs be a constraint between the variablesSinA T-tuplet is said tosatisfyCy if either S & T
or.S C T and the projection of onto S is a member ot’s.

Definition 2.4 (Consistency-Check).Let C's be a constraint and letbe anS-tuple. A test of
the forms € Cy is called aconsistency-check

Consistency-checks are decidable. Usually, consistency-checks are understood to be tractable.
Standard measures for the complexity of constraint satisfaction problems are the average and the
worst number of consistency-checks needed to solve that problem. In the remainder of this the-
sis, we shall—for reasons which will become apparent—sometimesug®rt-checknstead
of consistency-check.

Constraint Satisfaction Problems

Definition 2.5 (Constraint Satisfaction Problem). A Constraint Satisfaction Proble(CSP is

a triple of the form( X, D, C'), whereX is a set of variables] is a function that maps each
variable inX to its domain, and’ is a set containing constraints on subsets of the variables in
X.

Note that without loss of generality we may assume thatit D, C') is aCSPthen X =
UcgecS because we can always add the unary consti@jnt = D(x) for everyz € X for
which there is no unary constraint. From now on we shall assume that every constraint satisfac-
tion problem( X, D, C') is such thatX = UcecS.
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In the following, aCSPwill be calledfiniteif the cardinalities of the domains of the variables
of the CSPare finite.

Associated with everg SPis its constraint graph Constraint graphs are hyper-graphs. For
every variable of the&€SPthere is a vertex in the graph and vice versa. For every constrgint
of the CSPthere is an edgé’s in the constraint graph between the vertices corresponding to the
variables inS and vice versa.

The maximum domain size of the variables of£&Pis usually denoted in the constraint
literature. The number of edges in the constraint graph ©8&is usually denoted. A CSP
whose constraints all have an arity of two or less is callbthary CSP,

Definition 2.6 (Satisfiability of CSP). Let ( X, D, ') be aCSP, and letZ be a set of variables
such thatX C Z. A Z-tuple is said tssatisfythe CSPif it satisfies each of the constraintsdnh

A CSPis calledsatisfiableif there is a tuple which satisfies tl@&SPandunsatisfiableother-
wise.

The micro-structureof a binaryCSPis a detailed way of depicting @SP[Freuder, 1993
Figure 2.1 depicts the micro-structure of the constraint satisfaction prob¥én, C'), where
X ={z,y}, D(x) = {0,1}, D(y) = {0,1}, C = { C2},Cy}, Clayy }» Cray = {0,1},
Ciyy = {0} andCy,yy = {(0,0),(0,1),(1,0)}. The domains of the variables are rep-

Figure 2.1: Micro-structure of CSP.

resented by the dashed oval-shaped structures. The values in the domains of the variables are
represented by the circles in the domains. The binary constraints are represented by the edges
between a value in the domain of one variable and a value in the domain of another variable. The
unary constraints are represented by the remaining edges-tdple is in a constraint if and
only if its values are connected by an edge between the variabtes in

From now on unary constraints will be omitted from micro-structure€8fs. It will be
implicitly assumed that each value in the domain of each variable satisfies the unary constraint
on that variable.

Definition 2.7 (Solution). LetC = ( X, D, C') be aCSP. An X -tuple that satisfie§ is called a
solutionof C.

Definition 2.8 (Equivalence of CSPs). Two CSPs ( X, Dy,Cy) and ( X, Dy, C,) are called
equivalentf and only if their solutions are the same.
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2.2.3 Chronological Backtrack Search

In this section we briefly recall some properties of the chronological backtrack search algorithm
to solveCSPs and discuss some of the problems which occur with this algorithm.

Backtracking Algorithms

Constraint satisfaction problems whose variables all have domains of finite cardinality are fre-
quently solved using the chronological backtracking algorithm. Variants of this algorithm range
from:

¢ aplain versionGolomb and Baumert, 196%ith a predefined variable and value ordering;
to

¢ forward checkindHaralick and Elliott, 198DandMAC [Sabin and Freuder, 19p#which
try to prevent errors by maintaining certain levels of local consistency; and to

e backjumping[Gaschnig, 19718 conflict directed backjumpingProsser, 1993and dy-
namic backtrackingGinsberg and McAllester, 1994vhich try to prevent local mistakes
by locating “the” cause of previous errors.

For surveys of backtracking the reader may wish to co&lihdrak and van Beek, 1995; 1997;
Nadel, 1989; Dechter and Frost, 199Basic properties of backtracking can be foundi@ins-
berg, 1993; Tsang, 1993

An algorithm to solve probler® is called asoundalgorithm to solveP if, whenever it returns
S, thenS is a solution of P. An algorithm to solve probler® is called acompletealgorithm to
solveP if it returns all solutions ofP. Backtracking is sound and complete.

Search Trees

2 (@__@_@\

\
y(@@\,
VA
(AW

T (@?}5}

Figure 2.2: Micro-structure of a three-variable CSP.

Consider the constraint satisfaction probledd, D,C'), whereX = {xz,y,z}, D(z)
D(y) = {0,1}, D(2) = {0,1,2}, Cfapyy = {(0,0),(0,1),(1,0),(1,1)} andCy,.; =
{(0,0) }. The micro-structure of the SPis depicted in Figure 2.2.
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A chronological backtracker which uses the (standard) lexicographical ordering heuristics
on the variables and the values in their domains to solveCtBe will visit the nodes in the
search-tree depicted in Figure 2.3 using an in-order traversal. The subscripts to the right of the
nodes indicate the visiting order of the nodes.

The shortest paths from the root to the leaves of the tree that are printed in bold face corre-
spond to the solutions of theSP. The backtracker starts off by makingthe current variable
and by setting its value t@. It will then try to find which combinations af andz are compatible
with the current choice far. It will need six consistency-checks to do this—one check for each
of the six members in the Cartesian product of the domainsawfd -.

Z:03 Z:14 2225 Z:07 Z:18 Z:29 Z:012 Z:113 22214 Z:Ow 22117 22218

- -0 —l1l Tl

y =0y y=1g y=0n y =1

- = -

z =0, x =1y

Figure 2.3: Chronological backtrack search tree.

To complete the search the backtracker will assigio = and will try to find out which
combinations fory andz are compatible with this new assignment:itol he consistency-checks
it requires to find these compatible assignments(arte ) € Cy,,; and(v,w) € Cfy..y, for
0 <v <1,and0 < w < 2. The consistency-checks of the fofm, w ) € Cy, ., are exactly the
same as the ones that were needed to find the values that were compatible with the assignment
x = 0. In total it will need twelve consistency-checks O, ., alone.

Chronological backtracking cannot remember any consistency-check it has carried out be-
fore. This is one of its greatest deficiencies.

Note that each of the consistency-checks that failed is a consequence of the fact that some of
the members of the domain gfand z do not participate in any of the solutions. That some of
these members are not part of any solution can be discovered by examining the co@igjrajnt
The removal of these valuesfrom C,;, and1 and2 from C . ,, beforethe search had started
would have prevented all consistency-checks that failed.

An important lesson can be learned from this example because problems like the one dis-
cussed here can be part of larger problems and may have to be solved over and over again. To
remove values from the domains of the variables which cannot contribute to solutions of such
sub-problems will not change the solutions of the whole problem but will improve the search
because each time the sub-problem has to be solved, the values do not have to be taken into
account.

2.2.4 Consistency

In this section we shall study the notiona@jinsistencyn constraint satisfaction, certain proper-
ties of CSPs that have a certain level of consistency, and the use of consistency as a preprocessor
of CSPs to improve search.
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One of the innovating contributions of constraint satisfaction to artificial intelligence is the
notion of consistency. Early studies on consistency focussed on special cases of consistency
[Montanari, 197} (see als¢Montanari and Rossi, 1988 A standard reference for special cases
of consistency is alsfMackworth, 197F. The special cases of consistency referred to before
can all be captured as instances of the more general notibrcofisistency of£SPs [Freuder,

1979. The following paragraphs provide a definitionfetonsistency

Before we can defing-consistency we need the notion/oBatisfiability.

Definition 2.9 (k-Satisfiability). Let (X, D,C) be aCSPand letk be a positive integer. A
T-tuple is said td:-satisfythe CSPIf it satisfies each of the constrainis € C for whichS C T
and for which|S| < k.

A CSPis calledk-satisfiable if for every subsét of X whose cardinality ig: there is a
T-tuple whichk-satisfies theCcSP.

Definition 2.10 (k-Consistency).Let X be a set containing > 0 variables, le{ X, D,C') be
aCSP and let2 < k < n be an integer. Th€SPis 1-consistentf for every x € X it holds
thatD(z) = Cy,y # (0. TheCSPis k-consistentf for every S-tuple of the form( v;,, ..., v;, )
which (k—1)-satisfies th&€SPit holds that forevery” € { SU{z} : z € X \ S } thereisdl-
tuple (wj,, ..., w;, ) which k-satisfies theCSPand has the property thgt = j, = v;, = w;,,
forl <p<kandl <qg<k.

From an intuitive point of view, & SPis k-consistent if for evenb-tuple of cardinalityk — 1
which (k — 1)-satisfies theCSPit is possible, for each of the remaining variables X \ S, to
find anz-tuple such that the result of extending tht¢uple by thez-tuple is an({ z } U S)-tuple
which k-satisfies thecSP.

Note that this operation of extendirffytuples is exactly what happens all the time during
backtrack-search when values are assigned to the current variable and consistency-checks are
carried out to decide whether these assignments satisfy the constraints between the current and
past variables. SPs with higher levels of consistency are easier to search in the sense that they
usually allow for fewer errors to be made during backtrack search.

Definition 2.11 (Strong k-Consistency). Let & be a positive integer. ACSPis strongly k-
consistentf it is j-consistent for all < j < k.

It is important to note that &SP involving n variables which is strongly.-consistent is
satisfiable.

The following theorem relates the level stfongk-consistency of binarg SPs and the max-
imum domain size of the variables. The reader is referreldD&chter, 1990bfor proof and
further detalils.

Theorem 2.12 (From Local to Global Consistency)LetC = ( X, D,C') be aCSPsuch that
the maximum arity of the constraints @ is r, and max({ |D(z)| : z € X }) = k. If Cis
strongly(k(r — 1) 4+ 1)-consistent, then it is globally consistent. In particulat ifs binary and
strongly(k + 1)-consistent then it is globally consistent.
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Binary CSPs that are 1-consistent are calleade-consistenBinary CSFPs that are 2-consis-
tent are calledrc-consistentThe reasons for this are historical.

The time-complexity of transforming a binaySPinto its arc-consistent equivalent as a
function of the maximum domain sizé and the number of binary constraintss O (ed?).

This result is due tdMohr and Henderson, 1986vho presented an optimal arc-consistency
algorithm calledAC-4. Note that it is straightforward to see that it should not be necessary to
spend more thaad? consistency-checks because there cannot be mored#hanch checks and
each check can be remembered at the cost®fed?) space-complexity. However, the number

ed? can become quite large and it is a challenge to find algorithms with a lower space complexity
thanQ (ed?). Another algorithm to transform @SPinto its arc-consistent equivalent AC-3
[Mackworth, 1977. The worst-case time-complexity @fC-3 is O (ed®). It was observed in
[Wallace, 199Bthat AC-3 almost always performed better thag-4 despite the fact thatC-3

has a worse worst-case time-complexity.

Another optimal arc-consistency algorithm calked-7 is presented ifBessiérest al,, 1995
(See alsdBessiéreet al, 1999). This algorithm performs much better thag-3 andAC-4 on
average.

A binary CSPis calledconnectedf its constraint graph is connected. A graph that is a finite
collection of trees is called ®rest. Binary CSPs that are arc-consistent and whose constraint
graphs are forests can be solved (in the sense of returning a solution if it exists) without back-
tracking[Freuder, 198 These results dfFreuder, 198Pwere generalised ifFreuder, 198b

As already indicated, the use of consistency algorithms to transto®®s into equiva-
lent problems that are more consistent usually improves search. It takes ahdnoshsis-
tency-checks to remove from the domains of the variables those values that do not satisfy the
unary constraints on those variables. The costs of this are much less than the costs of backtrack-
ing whereas the removal of a few values from the domains of one or more variables significantly
reduces the size of the search-space, which is of the same ordgragD(z)|.

Similarly, making aCSParc-consistent is a good investment because the overhead required
to make theCSParc-consistent is low in comparison with the costs of search. The removal of
even a few values from the domains of one or more variables reduces the number of occasions
where local mistakes can be made during search thus reducing the number of candidate solutions
that have to be considered. Practical evidence in the form of experiments where node-consis-
tency and arc-consistency algorithms were apphiefbresearch have supported the claim that
the combined costs of consistency and search are less than the costs of searching without the
application of these consistency algorithms.

2.2.5 Consistency Maintenance During Search

In this section we shall study the relationship between the maintenance of low levels of consis-
tency during search and the complexity of the subsequent search.
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Propagate and Generate

Up to around the 1990s it was commonly agreed upon by the constraint satisfaction community
that the application of consistency-algorithms was to mages node-consistent (1-consistent)

and arc-consistent (2-consistehgforesearch and that search was to be carried out alone while
maintaining a level of consistency which was stronger than node-consistency but not as strong as
arc-consistencfSabin and Freuder, 19R4Sed Nadel, 1987; 1980for a study of selected back-
tracking algorithms and a classification of such algorithms according tetireeof arc-consis-

tency they maintained. In Nadel's terminology these degrees were numbers which were strictly
betweer) and1.

The agreement by the constraint satisfaction community was questioned and evidence was
provided that the Maintenance fufll Arc-Consistency MAC) during search was more efficient
on average than searching while maintaining lower levels of consis{&atyin and Freuder,

1994. This was supported biBessiéreet al., 1995 where results were presented of the appli-
cation of aMAC-algorithm to problems. With the exception of the Zebra Problem the problems
that were solved were beyond the scope of methods which only maintained consistency levels of
less than two.

Backtracking algorithms which maintain consistency levels of two and more during search
are sometimes referred to popagate-and-generai@s opposed to generate-and-test) because
these algorithms use constraint propagation to obtain a certain level of consistency and then
generate the next part of the solution.

Justification of MAC

The reason why the maintenance of arc-consistency during search works is similar to the reason
why it is good to make problems arc-consistent before search. It is because an “assignment” to
the current variable in backtrack search can be viewed as the removal of values from a unary
constraint. This is a process by which values in the domains of other variables may directly
or indirectly lose support, i.e. it is a process by which problems may lose a certain degree of
consistency. The loss of consistency normally leads to more local mistakes during search. A few
assignments can lead to large inconsistencies. If the level of consistency is low it is relatively
easy to maintain that level of consistency during search compared to the costs of search alone.
Experimental results have reconfirmed this several times.

2.2.6 Summary

Constraint satisfaction problems are a good vehicle to specify, represent, and solve certain classes
of problems. A frequently used algorithm to solve constraint satisfaction problems is backtrack-
ing. One of the problems with backtracking is that it leads to thrashing because backtracking has
a short-term memory and has to rediscover facts over and over again.

One of the major contributions of constraint satisfaction theory to artificial intelligence is the
notion of consistency. The improvement of backtracking by maintaining certain levels of consis-
tency and exploiting knowledge about the level of consistenS#s has brought problems into
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the realm of feasible tasks that would have remained intractable without these improvements.

2.3 Constraint Logic Programming

2.3.1 Introduction

In this section we shall briefly discuss constraint logic programmingpy. It is assumed that the
reader is familiar with logic programming, unification, and constraint satisfaction. The reader
who is not familiar with logic programming may wish to cons[Milsson and Maluszynski,
1989; Apt, 1997; Bratko, 1986 The reader not familiar with unification is referred[®aader
and Siekmann, 1993; Siekmann, 1989 [Lassezet al, 1984. The reader not familiar with
constraint satisfaction may wish to consult Section 2.2 and the references presented therein.

Constraint logic programming is a generalisation of logic programming in the sense that it
does not depend amificationto decide satisfiability. Instead, it uses constraint satisfaction. An-
other interesting feature of constraint logic programming is that it allows for constraints to appear
both in input and output. To understand why this is more general than the logic programming
approach, one may observe tightactic equalitys the only way by which things can be unified
in logic programming. For example,-f : C x C — C is the addition operator as “usual” (not to
be confused with a logic programming functor) and - is a syntactically sugared version of the
equality relation, then it is impossible to use the built-in logic programming machinery to infer
that{ z + y = 0,2 — y = 0 } entailsz = 0. Adding constraint satisfaction to logic programming
languages enlarges the set of formulae which are provably satisfiable.

The first real constraint logic programming languageROLOG Ilwhich allows equations
and inequations overtional trees Successors d?PROLOG Il are all instances of constraint
logic programming languagé€olmerauer, 1984; 1987; 1900

Another constraint programming languageCisP(R-Lin), which is an extension oPRO-
LOG with linear inequalities over the realdaffar and Lassez, 1986; 1987a; 1987b; Jadfar
al., 1993; Heintzeet al, 1994. A generalisation ofcLP(R-Lin) is RISC(CLP) which is not
restricted to linear (in)-equalitidéiong, 1992 (see alsqHong and Ratschan, 1995

The interested reader may wish to conga#ffar and Maher, 1994or an excellent survey
of constraint logic programming.

The remainder of this section is as follows. Section 2.3.2 disc&se&R-Lin). RISC(CLP)
is discussed in Section 2.3.3. A selection of other constraint logic programming languages is
described Section 2.3.4. A summary is provided in Section 2.3.5.

2.3.2 CLP with Linear Inequalities over the Reals

This section discusses some aspect€bP(R-Lin) [Jaffar and Lassez, 1986; 1987a; 1987b;
Jaffaret al, 1993; Heintzeet al, 1994. The discussion provides some background about the
implementation ofCLP(R-Lin), the soundness of the implementation, and the differences be-
tween theCLP(R-Lin) approach and the constraint satisfaction programming approach.
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In the following it is assumed without loss of generality that systems of equations and in-
equalities do not contain equations. This is justified becausaifds are real them = b <~—
a<bAb<a.

CLP(R-Lin) is one of the earliest examples of a constraint logic programming language.
CLP(R-Lin) extendsPROLOGWwith linear inequalities over the reals. Tl&P(R-Lin)-engine
works just likePROLOGSs resolution-machinery except for the fact that it can also decide the
satisfiability of linear inequalities over the reals. The first phase of Dant3igplex Algorithm
is used to decide the satisfiability of linear inequaliti®antzig, 19638 (See alsd Schrijver,

1994). If it turns out that a certain branch in the search tree becomes infeasible due to an
inconsistency in the linear inequalities then backtracking takes place. If variables become ground
in the process of deciding satisfiability and if inequalities exist containing terms that are not
linear, then the values of the ground variables are substituted into the higher order inequalities
thereby possibly introducing inequalities that were not entailed by the old ones.

In the process of deciding satisfiability it is of utmost importance to restrict the number
of inequalities by removing redundant inequalititsissezet al, 1989. Integrations of the
Simplex Algorithm and constraint engines which remove the need to copy the constraint-store
are discussed ifJaakola, 1990and[Van Hentenryck and Ramachandran, 1094

The constraint logic programming approachoafP(R-Lin) differs from the constraint satis-
faction programming approach in the sense that constraint satisfaction programming maintains
consistency of thevholeproblem on docal level, whereaLP(R-Lin) maintains consistency
of part of the problem (linear inequalities) ongdobal level. Both approaches have proved to
work.

CLP(R-Lin) has been a great success both in and outside academia. Unfortunately, the im-
plementation ofCLP(R-Lin) is not sound because it depends on the underlying hardware for
carrying out floating point operations. Concerns about the efficiency of the implementation have
led to a decision to drop soundness. Though the efficiency certainly has contributed a lot to
its success, questions should be asked about the applicability of an unsound implementation of
CLP(R-Lin) as a general constraint programming tool.

2.3.3 CLP over the Reals

In this section we shall discusslSC(CLP) which was developed at the Research Institute for
Symbolic ComputationgISC) in Linz, Austria[Hong, 1992.

RISC(CLP) is another member of the constraint logic programming family. It is a general-
isation of CLP(R-Lin) in the sense that it can be used to decide the satisfiability of sentences
in the first-order theory of the real¢FOTR). The first-order theory of the reals roughly con-
sists of quantified conjunctions and disjunctions of equalities, strict inequalities, inequalities,
and inequations. It is known since the 1930s #@lRis decidabld Tarski, 195]. Tarski also
provided a decision algorithm. The complexity of Tarski’s method is not optimal and problems
in the first-order theory over the reals are generally very difficult. Recent work by Collins and
Hong has brought many problems from this theory into the realm of tractability that were in-
tractable with other method€ollins and Hong, 1991 Also of interest to the reader may be
[Hong, 1991 which contains an interesting comparison of the tractability of methods to decide
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problems in the first-order theory of the reals. More about the first-order theory of the reals can
be found in Section 2.4.2.

The algorithm used to implemeRt SC(CLP) usesquantifier eliminatiorto translate quanti-
fied formulae ofFOTR to equivalent formulae dfOTR which contain strictly fewer quantified
variables. At the heart of the algorithm lies Collins’ Cylindrical Algebraic DecompositigyDY)
with improvements by Collins and Hong. The interested reader is referf&btiins and Hong,

1991; Mishra, 199Bfor more information about the AD-algorithm. RSC(CLP) keeps formu-
lae inFOTR consistent and backtracks as soon as inconsistencies occur.

TheRISC(CLP)-engine uses Grobner bases to simplify the constraint-EBurehberger and
Hong, 199]. This was shown to speed up the computation.

Unfortunately, the implementation &ISC(CLP) is not available for use outside &iSC.
RISC(CLP) is sound. According to Hong it is sloltHong, 1992.

The difference between the constraint satisfaction programming approach and the constraint
logic programming approach &ISC(CLP) is that the former keeps the whole problem partially
consistent, whereas the latter keepsaat of the problemglobally consistent. This is exactly
what constitutes the difference between constraint satisfaction programmir@_&(&-Lin).

2.3.4 Other CLP Dialects

This section discusses some selected members of the family of constraint logic programming
languages.

A system closely related ®ISC(CLP) is CAL (Contrainte Avec Logiqud)Aibaet al,, 1988;

Sakai and Aiba, 1989; Sakai and Sato, 1990; Aiba and Hasegawal. 1882 uses Grobner
bases to decide satisfiability of polynomial equations over the field of the complex numbers. The
main differences wittRISC(CLP) are—of course—the domains of computation and the fact
that CAL can only decide satisfiability over equations. Having said that, it should be noted that
inequations can be easily addeda@eaL because (in fields) # b is satisfiable if and only if

¢ x (a —b) = 1is satisfiable. Like all the constraint logic programming languages discussed
before,CAL keeps part of the problem (equations over the complex numbers) globally consistent.
CAL is sound.

A constraint logic programming based on interval arithmetiCli®(BNR) developed at Bell
Northern ResearckOlder and Benhamou, 193 CLP(BNR) allows equations over boolean
formulae and constraints over integral domains as well as floating point intervals. It uses interval
arithmetic tonarrow the domains of the variables involved in constraints and answers over the
reals are returned as intervals which contain all the solutions. Here, an interval is narrowed if it
is transformed to a subset of that interval. The change of order of constra@t®{BNR) may
result in domains the bounds of which differ in precision. This illustrates the fact that, in general,
CLP(BNR) depends on operational semantics.

Unlike the other constraint programming languages we have seen untChB{BNR) only
keeps part of the problem locally consistent.

Variations on the theme @LP(BNR) are discussed ifBenhamotet al, 1994; Benhamou,
1999. An approach where different kinds of methods are combined to make problems glob-
ally more consistent is discussf8enhamou and Granvilliers, 19p6Three different methods
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were used to make problems consistent: (a) local consistency techniques, (b) symbolic rewriting
(Grébner basis computation—a global consistency technique), and (c) interval methods (another
local consistency technique). They provide some (relatively small) examples where the transfor-
mation of sets of equations to Grobner bases as a preprocessing method decreased the overall
solution time because the Grobner bases were better suited for their interval algorithms.

2.3.5 Summary

Constraint logic programming has proved itself an interesting paradigm for the expression of
problems in the form of programs, the solution of these programs, and the computation of a rep-
resentation of the solutions in the form of constraints. Constraint logic programming languages
frequently keep part of the problem globally consistent as opposed to constraint satisfaction pro-
gramming which keeps the whole problem partially consistent. Work is undergoing to combine

local and global consistency techniques.

2.4 Related Work in Mathematics

2.4.1 Introduction

In this section we shall study certain kinds of constraints which occur in mathematics. We shall
provide references to the existing mathematical literature as part of the presentation.

The remainder of this section is as follows. In Section 2.4.2 we shall provide an introduction
to thefirst-order theory of the real@cOTR). In Section 2.4.3 we shall discuss applications of the
first-order theory of the reals. We shall provide a brief summary in Section 2.4.4.

2.4.2 The First-Order Theory of the Reals

This section formally defineEOTR [Renegar, 1992a; 1992b; 1992c; Arnon, 1988; Arnon and
Mignotte, 1988. The decision problem for the first-order theory of the reals is the problem of
determining the truth-values of certain kinds of formulae. These formulae may involve universal
and existential quantifiers as well as the Boolean disjunctive and conjunctive connectives. At
the “lowest” level, formulae are comparisons of polynomials whose coefficients are real. Valid
sentences iIFOTR satisfy the following four rules:

1. If x is a row matrix of variablesy(x) a polynomial whose variables are a subset of the
variables inx and whose coefficients are real, af\done of the comparison operators in
{=,#,<,>,<,>} thenp(x)A0 is a sentence iFOTR

2. If §; andS, are sentences IFOTRand& is Vv (disjunction) orA (conjunction) thers; S,
is a sentence iIROTR.

3. If S'is a sentence IROTR, x is a row matrix of variables, an@ is one of the quantifiers
in {3,V } then(9Qx)(S) is a sentence iIFOTR. Here, the quantification aPx overS is
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the obvious one, namely the quantification of the variablesaowerS. If Q = Jthen the
quantification is existential. I = V then the quantification is universal.

4. If Sis a sentence ifROTRthen so is-S.

It can be shown that every formula FOTR can be written as an equivalent formula which
has the following form:

(Q1X1 c Rcl)(QQXQ € RCQ) cee (Qan < RC")(P(Xl,XQ, R ,Xn>), (21)

wherec; is a positive integer, an@,; € {V,3}, for1 < i < n, such thatQ;, # Q,,,, for
1 <i < n,and whereP(x;,x, .. .,X,) is a quantifier free Boolean formula of the form:

pr(X1, X2, .., X,) A 0 @

pT—l(le X2 .- ,Xn) A7'—1 0 Dro1
pT(X1>X27"'7Xn) A‘r 07

wherep;, is a real polynomial, and\, € {=,#,<,>,<,>},for1 < k < 7, and where
®; € {V,A},forl <j < 7. Formulae like the one in Equation (2.1) are caléeditencesThe
reader is referred tfRenegar, 1993dor further details.

Example 2.13 (Sentence)The following formula is a sentence FOTR:
(3l € RY)(V]j] € RN (i = j > 0).
The sentence is obviously false.

Tarski has provided a decision algorithm for sentencdsdmR where there is only one ex-
istential quantifief Tarski, 195]. By making slight modifications to the algorithm, this can be
turned into a decision method f®OTR. Tarski's method is by no means optimal and better
methods have since then been discovdfenegar, 1992a; 1992b; 1992c¢; Collins and Hong,
1991. This thesis provides no complexity results for sentencesdmR. The only statement
that will be provided about the complexity of the decision problerA©@T R s that this problem
is significantly more difficult than other commonly arising problerfidong, 1991 compares
several algorithms to decide problemsHOTR and gives an indication of the solution time of
certain problems which are currently tractable. It demonstrates that—at least at the moment it
was written—tractable problems should be decided with algorithms whose worst-case time-com-
plexities are not optimal.

Let X = {z,...,x,} be a non-empty set of variables and(et, D, C') be a finiteCSR,

whereC = {Cs,,...,Cs, }, S; = {xz’u--w%‘ki } andl < k; < n, forl < i < m. Without
loss of generality it may be assumed that the domains of the variables are subsets of the reals.

It is important to notice that théecisionCSP—the problem of deciding whether there exists an
“assignment” to the variables ik that satisfies each of the constraints—is an instan&eafR.
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As a consequence of this, techniques that are used to deciti are also applicable to the
decisionCSP. The name “decisio®SF is due to[Bowen and Bahler, 1991

It is not difficult to show that the decisioBSPis an instance oFOTR. For example, let
S ={mx,...,z, }, and letCs be the constraint given by

OS:{(Ull,...7U1n)7...,(Umh...,l}mn)},
thenCy is satisfiable if and only if the following sentenceR@®TRIs true:
(F(z1,..yxn) ERY(y=vi A Ay =01) Vo V(X = Ot A= Ay = Upnp))-

A CSPis satisfiable if there is a member of the Cartesian product of the domains of the variables
which satisfies each of the constraints. It is left as an exercise for the reader to formulate the
satisfiability of a generaLSPas a sentence iROTR.

2.4.3 Applications of FOTR

The first order theory of the reals has many applications and this section briefly discusses some
of them. Our discussion is by no means complete and we shall only discuss approaches which
are related to constraint logic programming.

An interesting application ofOTRis to quantifier elimination for special casdfeispfen-
ning, 1993. Obvious applications dfOTR are to the satisfiability of systems of equations. This
opens the door to geometric theorem proving (see[&igzler and Stifter, 1986; Kapur, 1986;
Sturm and Weispfenning, 19p6

Less obvious applications are to decision problems that may arise as part of optimisation
problemgWeispfenning, 1994(see alsqHong and \Asaru, 1998.

As pointed out in the previous section, the decision problem for certain kindses are
also instances dfOTR. Questions concerning the continuity of functions can also be expressed
in FOTR.

In [Weispfenning, 1997examples are provided #fOTR to the analysis of electronic net-
works and hydraulic networks (see a[stleispfenning, 1994; 1995 An interesting side effect
of the method used is that—as in constraint logic programming—expressions are returned that
are necessary and sufficient conditions to guarantee that certain properties in these networks
hold. The expressions that were returned are useful because they can be used to locate critical
parts of the design. A disadvantage of the method is that the expressions which are returned
are large and a lot of work has to be put into their simplificafibolzmann and Sturm, 1995;
Dolzmannet al, 1996; Dolzmann and Sturm, 1997a; 1987b

2.4.4 Summary

Special instances of problems occurring in the first-order theory of the reals have been studied
for centuries. Itis only since the 1930s that a general decision method has been known to decide
any problem in this theory.
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The area of applications 6fOTRis vast and ranges from certain classes of deciSiBRs to
optimisation problems and geometric theorem proving.

It has only been since much more recently that methods have become available that can be
applied to less trivial problems iROTR.

2.5 Summary

In this chapter we have studied the use of constraints in different areas and methods to solve
them. In particular we have studied constraint satisfaction probl€@88s), constraint logic
programming CLP), and the first order theory of the realsqTR).

Constraint satisfaction problems are usually solved with variations of the chronological back-
tracking algorithm. The low level of consistency which m@sPs have in common causes
thrashing and frequently leads to virtually endless search. The maintenance of low levels of
consistency during search has proved to significantly improve the efficiency of search.

Constraints also occur in constraint logic programming. Different constraint programming
languages may have different domains of computation. Domains of computation range from
linear inequalities over the realSI(P(R-Lin)), to equalities over the complex numbeGA(L),
to sentences over the reaRISC(CLP)), and many more. Some constraint logic programming
languages maintain global consistency over their domain of computation. This has also proved
to reduce thrashing.

Constraint satisfaction programming and constraint logic programming have different ap-
proaches to the level of consistency they maintain during search. Constraint satisfaction pro-
gramming maintains partial levels of consistency over the problem as a whole, whereas many
constraint logic programming languages maintain global consistency over a part of the problem.
It remains to be seen if a combination of the two approaches could lead to an improvement.

The first-order theory of the reals allows for the formulation of many interesting problems.
Since the 1930s this theory has been known to be decidable. A common solution technique
for FOTR is quantifier elimination (sometimes restricted to special cases). Recent work has
provided quantifier elimination algorithms which bring the decidability of interesting problems
into the realm of feasibility. It can be shown that the decidability of the satisfiability of finite
constraint satisfaction problems can be formulated as decision problerasR



Chapter 3

Varieties, ldeals and Grobner Bases

3.1 Introduction

This chapter is an introduction tearieties ideals and Grobner bases The purpose of this
chapter is to provide the required background for the next two chapters of this thesis.

Polynomial ideals are a useful tool for the expression and solution of many problems occur-
ring in mathematics and the “real” world. Ideals can be used for the decision of the satisfiability
of systems of equations, variable elimination, solution of simultaneous equations, and so on. Va-
rieties are sets consisting of the common zeros of polynomial ideals. As such, they are intimately
related to polynomial ideals. It will turn out that there also is a close relationship between cer-
tain kinds of varieties and finite constraints. Finite constraints—as we shall see in the following
chapter—are in essence varieties. This allows for the translation of constraints to polynomial
ideals, thereby allowing for the application of algorithms from ideal theory. The existence of the
translation technique also means that it is possible to integrate dists&teand problems of a
continuous nature. This possibility, being interesting in itself, will not be further explored in this
thesis.

Buchberger provided an algorithm (the Buchberger algorithm) for the computation of Gréb-
ner bases in the 1960s. Grobner bases provide useful tools in polynomial ideal theory. They
allow for the decidability and solution of many problems which before their invention were not
known to be solvable. Grobner bases allow for the solution of each of the following problems:

ideal membership is a given polynomial a member of a given ideal?
consistency problemdo the members of a given ideal have common zeros?
variable elimination eliminate certain variables from a given ideal.
dimension what is the dimension of a given ideal?

counting if a given ideal is zero-dimensional, i.e. if the members of the ideal have a non-zero
finite number of common zeros, how many such common zeros are there?

23
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As observed by Buchberger, there is also a relationship beteeepletion algorithmsuch

as the Knuth-Bendix algorithiiKnuth and Bendix, 19710andcritical pair algorithmslike the
Buchberger algorithm (Sd@uchberger, 1987; Winkler, 1984 Buchberger’s observation al-
lowed for improvements to the Knuth-Bendix algorithm similar to improvements—usually called
Buchberger’s criteria—made to the Buchberger algorithm.

In the remainder of this chapter we shall explain how each of the aforementioned prob-
lems can be solved using Grobner basis theory and we shall provide the required mathematical
background. In addition, we shall point out some relationships between constraint satisfaction
problems and algebra. The style of presentation will be informal. It is only required that the
reader is familiar with the notion of @ng in algebra. Throughout, we shall use examples to in-
troduce ideas and exemplify certain concepts. It is not the purpose of this chapter to provide deep
insights but to provide insights which are “easy” to remember and grasp. The reader interested
in a complete presentation of Grobner bases and the required background is reféBeckty
and Weispfenning, 1993; Adams and Loustaunau, IL984e reader interested in Grébner bases
and their relationship with geometry is referred @ox et al,, 1994. The reader interested in a
short introduction to Grobner bases is referrefBochberger, 1945

The remainder of this chapter is as follows. In Section 3.2 we shall study polynomial ide-
als and varieties and point out some relationships between ideals, varieties and constraints. In
Section 3.3 we shall provide a formal definition of Grobner bases. Section 3.4 consists of a
presentation of several Grobner basis algorithms for the decision and solution of problems in
polynomial ideal theory.

3.2 Ideals and Varieties

3.2.1 Introduction

In this section we shall study ideals and varieties. The presentation will be of an informal nature.
Systems of polynomial equations have been studied for millenia. This has led to the notion
of apolynomial idealWwhich captures properties of such systems very Wltietiesare solution
sets of systems of polynomial equations. Certain classes of ideals and varieties turn out to be
very closely related to finite constraints and we shall study their relationship.
Beside “ordinary” ideals, we shall also study special idealnishing idealswvhich char-
acterise varietiesglimination idealswhich have an application to the solution of systems of
polynomial equations, an@dical idealswhich correspond to certain kinds of vanishing ideals.

3.2.2 ldeals

In this thesis we shall only consider commutative rings with unity, i.e. we shall only consider
rings ( R, -, + ) where multiplication is commutative and where there is a special meinker
R\ {0} suchthatvVr € R)(r=1-r).

Definition 3.1 (Ideal). Let R be aring. A subrind of R is called aridealof R if (Vr € R)(Vi €
I)(ri € I).
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Definition 3.2 (Generating System of Ideal).Let I be an ideal of ring?. A generating system
of I is a subset, sa¥, of I such that every membewf I can be written as a sum of the form:

i=Y (N,
feF
where;(-) is some function from¥’ to R which hasfinite supporti.e. ¢;(-) has the property
that there are only finitely many € F' such thaw;(f) # 0. An ideal is said to bgeneratedoy
F C Rif F is a generating system éf The ideal generated by will be denoted( /'). The
ideal generated by f1, ..., f. } will also be denoted fi, ..., f,. ).

Thesumof two ideals/ and/J is the set containing all sums of members fréorand.J. The
sum of/ and.J is denoted + J and is given by

I+J={i+j:(i,j)elIxX]},

where- X is the Cartesian product operator. It is a straightforward exercise to prove thdt
is, again, an ideal.

Polynomial ringsare a special kind of rings. We shall denote the polynomial ring in (com-
muting) variablesX = {z,...,z, } overringR asR[X| or asR[zy,...,z,). It contains all
polynomials (including the zero polynomial) whose coefficients ar& iand whose terms are
power-products of the members &f.

A non-zero member of ring R is called aunit if there is av € R such thatww = 1. Aring
is called afield if every non-zero member of that ring is a unit. With the exception of a single
section in Chapter 4 where we shall consider other fields as well, the only field which we shall
consider in this thesis i§ and we shall write: for that field.

Anideal ] of ring R is called aproperideal of R if I C R. An ideal which has a generating
system whose cardinality is finite is calledimitely generateddeal. A ring is calledNoetherian
if every ideal of that ring is finitely generated. The following theorem is better known as Hilbert’s
Basis Theorem.

Theorem 3.3.Let R be a Noetherian ring, theR[z] is also a Noetherian ring.

A field is a Noetherian ring because it only contains the two id€al$ and(1). One of
the consequences of Hilbert's Basis Theorem is that ideals in polynomial rings with coefficients
in fields are finitely generated. Although they have not been defined yet, this is a good point to
state that Grobner bases are finite generating systems of polynomial ideals with some interesting
properties.

Let X andiW C X be non-empty sets of variables andldte an ideal of[I1V]. The smallest
ideal (with respect to inclusion) @t = k[X] containing/ will be denoted/. It is called the
R-moduleof 1.

3.2.3 Varieties

An affine' varietyin mathematics is a set which has the property that it is the smallest set (with
respect to inclusion) containing the common zeros of some set of polynomials from some poly-

1The word affine means connected.
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nomial ideal. LetX = {x,...,z, } be a non-empty set of variables, and #etC k[X]|. The
variety of F' is the set where each of the polynomialsfinvanishesi.e. “becomes” zero. We
shall normally order variables according to the “usual” lexicographical ordering, -. Nor-
mally, we shall assume that <.« z; <= ¢ < j. The following provides a formal definition
of a variety.

Definition 3.4 (Variety). Let n be a positive integer, and 1ef = {z,...,z, } be a set of
variables such that; <. z; <= @ < j, for1l <, 5 < n. Furthermore, let be a field, and
let F C k[X]. Thevarietyof F'in k" is denotedV (F') and is defined as follows:

V(F)={(v1,...,0,) €K" : FC (a1 —v1,...,2, —Vp) }.

Note thatF" C (x; —vy,...,x, — v, ) if and only if the substitution of vy, ..., v, ) for
(21,...,2, ) into each of the members &f is zero. It is a trivial exercise to show thet(F') =
V (( F)) foreveryF C k[X].

It is important to note that i¥" C k[xy,...,z,) andV = V (F) then the ordering on the
variables decides which member of atuple, . .., v, ) € V corresponds to which variable. Our
lexicographical variable ordering is such thatorresponds ta; and vice versa, fot < i < n.

Example 3.5 (Variety (1)). Letk =C,letf = z+y—1,andlety = x —y — 1. The intersection
of the linesf = 0 andg = 0 is the same as the variety k¥ of the ideall of k[x,y] which is
generated by f, ¢ }. The following demonstrates how to find the intersection.

V() = V({(/.9))

= V(z+y—lLaz—-—y—1))

= V{{z+y-L@-y-1)+(@@+y-1)))
= V{(z+y—1,2z—2))

= V{z+y—1,z—-1))

= V{(z+y—-1)—(z—-1),z-1))

= V({y,z—1))

= {(1,0)}

Example 3.6 (Variety (2)).Letk = C, let f = 22 +y*—1, and lety = y—z?. Interpretations for
f andg are that they represent the unit cirafe+ 3> = 1 and the parabola = 22, respectively.
The intersection of the two is the set of common zerog ahdg. See Figure 3.1 for a graphical
depiction.

Let I = (f,g). The common zeros of andg in %?, the intersection of the circle and the
parabola ink?, the complex solutions of the system of simultaneous equaiibasy? = 1 and
y = 2> andV (I) are all the same. The following shows how to fi¥id( f, g )).

I:<x2+y2—1,y—a:2>
=(Ix @ +y" - 1) —yx(y—a),y—a”)
:<yx2—|—x2—1,y—x2>
=(1x(yz>+2°—1) -2’ x (y—2%),y — 2”)
:<x4+x2—1,y—x2>.
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=0

Figure 3.1: Intersection of circle and parabola.

ThereforeV ({ f,g)) =V ({z* + 2? — 1,y — 2?)). The generating system
{x4+x2—1,y—x2}

of I clearly indicates that there are at most four complex solutions. It does this as follows. The
degree of the univariate polynomialinis four. Therefore, there are at most four different zeros
for = for which this polynomialvanishesi.e. “becomes” zero. The polynomigl— 22 is linear

in y. For every zero of* — 2% — 1 for x there is exactly ong for which the polynomial) — x>
vanishes. Therefore, the number of zeros is at most four.

The polynomialz* — 2% — 1 has fewer than four zeros if and only if it has zeros whose
multiplicity are greater than one. It has four zeros if and only if the multiplicity of each of
its zeros is one. As will be shown later in this chapter a simple algorithm exists to transform
polynomials likez* + z% — 1 into a polynomiali such that: has the same zeros and such that
the multiplicity of each of the zeros df is 1. With the aid of this algorithm it is possible to
determine that there are exactly four zeto%o find these zeros is the subject of a story with
which this thesis will not be concerned. See for exanjflecker and Weispfenning, 1993,
Algorithm STURMSEQ for an algorithm to isolate the real zeros of a uni-variate polynomial.

A field k is calledalgebraically closedf every non-constant polynomial ib[z] has a zero.
The algebraic closureof k is the smallest superset &f (with respect to inclusion) which is
algebraically closed.

An ideal I of k[X] is calledconsistenif 1 ¢ I andinconsistenibtherwise. It is a trivial
exercise to prove that an ide&bf a ring R is a proper ideal of? if and only if 1 ¢ I [Becker
and Weispfenning, 1993, Lemma 1]3& is not difficult to see thatif € 7 thenV (I) = 0. If k
is an algebraically closed field the converse is also true. This is stated as the following theorem.

2The zeros are given bv\/g -1/2, —\/\/5 -1/2, i\/\/5+ 1/2 and—iy//5 4+ 1/2.
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Theorem 3.7 (Hilbert's Weak Nullstellensatz).Let k£ be an algebraically closed field, & be
a non-empty set of variables, and febe an ideal of:[X], then! is consistent if and only if is
a proper ideal ofc[X] if and only if1 ¢ I if and only ifV (1) # 0.

The reader is referred tCox et al, 1996, Hilbert's Weak Nullstellensdtfor proof and
further detalils.

Note that if/ C k[X] then Hilbert's Weak Nullstellensatz provides us with information about
the existence of common zeros of the members of an ide&lslalgebraically closed then there
are no common zeros if and onlylife 1. Even ifk is not algebraically closed then there are no
zeros ifl € I.

3.2.4 Vanishing ldeals

Theideal of a varietyV is the ideal containingll polynomials thawvanishat V/, i.e. it contains
all the polynomials that “become” zero at each of the membe#s.olt is for this reason that
the ideal ofV is also referred to as theanishingideal of V. The following provides a formal
definition of a vanishing ideal.

Definition 3.8 (Vanishing Ideal). Let X = { z4,...,x, } be a non-empty set of variables, let
be a field and let” C k™. Thevanishing ideabf 1/ is denoted (1) and is defined as follows:

(V) ={feklX]: (Vvr,...,vn) €V E (21 —01,..,zn—vs))}.

Itis atrivial exercise to show that vanishing ideals are, indeed, ideals. Note that Definition 3.8
implies that the following holds:

I(V)=A{fek[X]: V(vy,...,0) e V)(fE(x1—v1,...,20p—vy)) }
={fekX]: (VUGV)(fEI({ D)}
] )

—{fek[X femevl({ Y

This equivalence will allow us—as will be shown further on in this thesis—to transform a con-
straint network to a generating system of a polynomial ideal whose common zeros are the so-
lutions of the network thus allowing for the application of algorithms from ideal (read Grobner
basis) theory to problems occurring in constraint satisfaction theory.

Example 3.9 (Vanishing Ideal).Letk = C, letn = 1, letV = {0}, and let/ = I(V') be the
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vanishing ideal ol C k. Then

I={feklz]: (Vwe{O})(fe(z—v))}
={f€klz]: fe{z—-0)}
={fekla]: fe(z)}
= k[z]n(z)
= ().
An ideal I of ring R is called amaximalideal of R if I is a proper ideal oRR andl + J €
{1, R} for every idealJ of R. ldeals of the formi({ v }) are maximal ideals. The maximal

ideal I = (zy —vy,...,2, — v, ) Of k[xq,...,2,] is the vanishing ideal of the single point
(v1,...,v, ) of the affine spacé™.

3.2.5 Elimination Ideals

Another special kind of ideal is aalimination ideal These have several applications. One
application is to finding the common zeros of polynomials. The following provides a formal
definition of elimination ideals.

Definition 3.10 (Elimination Ideal). Let k be a field, letX andW C X be non-empty sets of
variables, and le be an ideal o[ X|]. Theelimination idealof / with respect tdV is the ideal
I N k[W]. The elimination ideal of with respect td1” is denoted as$y, ().

The elimination ideal of C k[X] with respect td1" consists of all the polynomials iheach
of whose terms involve only power-products of variableglin

Example 3.11 (Elimination Ideal (1)). Let k£ = C, and let
I=((z=2%+(y—-2°—4y—(r—2)") Cklz,yl.

We can eliminate from I by “substituting”(z — 2)? for y “in” I. This leads to the elimination
ideal I Nklx] = (a? — 823 + 2122 — 20z + 4).

One application of elimination ideals is to the solution of systems of simultaneous polynomial
equations by recursively eliminating variables and extending partial solutions.

Example 3.12 (Elimination Ideal (2)). Let £ = C. The system
E={(z—2P+(y—-2P=4y=(x-2’}

can be solved using elimination ideals. SolviAgcorresponds to computing the set of com-
mon zerosV C k? of the polynomials inF = {(z —2)?>+ (y —2)? =4,y — (zr — 2)*} C
klz,y]. V. = V(F) = V(I), wherel = (F). We discovered in Example 3.11 that to
eliminatey from I leads to the elimination idedl N k[z] = (2% — 823 + 212% — 20z +4) =
{(z —2)*(z — 2+ V3)(z — 2 — v/3) ). The common zeros of the elementdin k[z] are given
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byz € {2—+/3,2,2+ /3 }. For each common zero farof the members of N k[z] there is
exactly one extended zero for, y ) of the members of N k[x,y] = I. The solutions of2 are
therefore given by (2 —v/3,3),(2,0),(2+v/3,3) }, i.e. the equations i’ are simultane-

ously true precisely whefi:, ) = (2 — v/3,3) or (z,y) = (2,0) or (z,y) = (2+/3,3).

As will be shown further on in this chapter, Grébner Basis Theory provides an algorithm to
compute elimination ideals.

In the process of finding the common zeros of polynomials using elimination ideals it fre-
guently occurs that an ideal is “projected” onto a “smaller” ideal. After the common zeros of the
members of the smaller ideal have been located, each such common zero has to be extended to
a common zero of the members of the “bigger” ideal. This extension process, as we shall see
in the following example (adapted frof€ox et al,, 1996, p. 11 is not always guaranteed to
succeed.

Example 3.13 (Failing Extension).Letk = C, let X = {z,y, 2z}, let F = {2z — 1,yz — 1},
and let/ = (F') C k[X]. It can be shown that the elimination idealloWith respect tof =, y }
is given by:

INklx,y={y—xz}.

Therefore, the common zeros of the membersiofz, y] are given by{ (v,v) : v € k }. How-
ever, the partial solution0, 0 ) cannot be extended to a solution including

In the previous example we have seen that the extension of partial solutions is not always
guaranteed to succeed. In the following paragraphs we shall present a theorem which provides
a sufficient condition to guarantee the extension of partial solutions. Before doing so we remind
the reader that if is an ideal ofk[zy,...,z,] then(vy,...,v,) € V(I) if and only if every
polynomial f € I vanishes for the simultaneous substitution, ..., v, ) for (z,...,z,)in f,
that is:

(V1,..,00) EV() <= [ C(x1—V1,...,Tp—Vy).

Before we study the Extension Theorem which provides a sufficient condition for the ex-
tension of partial solutions, we have to define the notion ofléaeling coefficienof a vari-
able in a multivariate polynomial. This notion will only be used in this part of the thesis. Let

f € k[zq,...,x,] be a non-zero polynomial. Notice that we can uniquely write every non-zero
f as a sum of the fornf = Y7 ¢t for suitably chosenv and¢; such thatc, # 0 and
¢ € kl[zy,...,z,-1], for0 <i < a. We calle, theleading coefficientf z,, in f.

The following theorem can be found in slightly different form[i@ox et al, 1996, Theo-
rem 3, Page 115 The theorem provides a sufficient condition to guarantee when partial solutions
can be extended.

Theorem 3.14 (Extension).Let X = {z,...,z,} be a set containing at least two vari-
ables, letk = C, let FF = {fi,...,fn} C kK[X]\ {0}, and let] = (F) C k[X]. Fi-
nally, let g; be the leading coefficient of, in f;, for1 < i < m. If I Nklxy,...,2,1] C
(x1— v,y — vy and{( gy, ..., gm) € (x1 —v1,...,2,-1 — v,_1) then there exists
v, € ksuchthatl C (x; —vy,..., 2, — v, ).
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The Extension Theorem states that every partial solutiomfor. ., x, 1 can be extended to
a partial solution for4, ..., z, if the leading coefficients af,, of the polynomials in/” do not
vanish simultaneousf. The reader is referred f€ox et al, 1996, Theorem 3, Page 1l1for
proof and further details about the Extension Theorem and Elimination Theory.

Note that in Example 3.13 the leading coefficients:aff the members of the generating
system of the ideal vanish simultaneously for the case where; = 0. Therefore, the extension
of the partial solutionr = y = 0 was not guaranteed.

Related to the notion of an elimination ideal is that of tiensiorof an ideal.

Definition 3.15 (Dimension of Ideal).Let X be a non-empty set of variables ah@ proper
ideal of k[ X]. Thedimensiorof  is defined as:

max({|W| : W C X, Ink[W]={0}}).

Without proof it is stated thatero-dimensional idealsre proper ideals the cardinality of the
varieties of which is finite.

3.2.6 Radical Ideals

Another special kind of ideals aradical ideals. Radical ideals ik[z1, . .., z,] and varieties in
k™ are closely related. I is algebraically closed then there is a one-to-one relationship between
the two.

Definition 3.16 (Radical Ideal). Let X be a non-empty set of variables. A proper idéaif
k[X] is called aradical ideal of k[ X] if it satisfies the property that:

(Vm e N\{0})(Vp e k[ X))(p" € = pe ).

Theradical of an ideall isthe idea f € k[X] : (3m € N\ {0})(f™ € I) }. The radical off
is denotedy/T.

Note that an ideal is a radical ideal if and only if = v/T.

Example 3.17 (Radical Ideal (1))Letk = C and let/ = ( z?). Clearlyy/I = (z ). The variety
V C kof I C k[z] contains the common zeros of the memberg,dfe.V = V (I) = {0}.
The idealJ of the varietyl” contains all univariate polynomials inwhich vanish ab. In order
for a univariate polynomial in: to vanish ab it has to be of the form: x f, wheref is some
polynomial ink[z]. Therefore,J = (V) = {z x f : f € k[X]} = («). Note thatz € J,
zxx=2?c Jandx ¢ I. Therefore] = (22) C (z) =1 =J,

Example 3.18 (Radical Ideal (2)).Let £ = C and let! be the ideal given by:

[=(2*z—1),(2*+1)(z—1)) C k[z].

3Note that the Extension Theorem only provides a sufficient condition for extension. It does not state that the
extension is impossible if the leading coefficients do vanish simultaneously.
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Then! is radical. For example,

I=(2*z—1),2*+1)(z—1))
=(2*(z—1),@*+1)(z—1) —2*(z—1))
= (2*(z—1),z—1)
=(z—1),

and it is not difficult to see that = v/T.
Example 3.19 (Radical Ideal (3)).Let £k = C and let! be the ideal given by:

I=(2*z—1)) C klz].

It is not difficult to see thaf is not a radical ideal. For example, each polynomial is of the
form fz%(xz — 1), for somef € k[z]. For the particular choice of = z — 1 it follows that
(x — 1)a*(x — 1) = (x(x — 1))? € I. Sincel contains(z(x — 1))? it follows that+/T contains
x(x — 1), whereas:(x — 1) is notin/.

Let k£ be any field and let € k[x] be a polynomial withn > 1 distinct zeros, .. .,v,,. The
square-free parof p is defined a§ ", (r — v;). A polynomial which is equal to its square-free
part (up to multiplication by a constant) is called@uare-free polynomiallhe square-free part
of a non-constant univariate polynomigle k[z] can be computed by dividing by ged( f, %),
where% is the first derivative of with respect ta:, andged(p, ¢) is thegreatest common divisor
of p andq. The reader is referred {€ox et al, 1996, Proposition 12, Page 17@r proof and
further details.

A non-zero univariate polynomial is call@donicif its leading coefficientid. A polynomial
f € k[z] \ {0} is calledirreducibleif f = gh implies that eithey or 4 is a unit. A polynomial
in k[z] is calledseparableif it does not have multiple zeros it [z], whereK is thealgebraic
closureof k. A field k is calledperfectif every irreducible polynomial irk[z] is separable. The
field of the complex numberS is perfecfBecker and Weispfenning, 1993, p. 31Einite fields
are also perfedBecker and Weispfenning, 1993, Corollary 7.73

The following lemma can be found 8Becker and Weispfenning, 1993, Lemma §.19

Lemma 3.20 (Zero-Dimensional Radical Ideal) Letk = C, let X = { z4,...,x, } be a set of
variables, and lef be a zero-dimensional ideal 6fX]. Furthermore, letf; be the unique monic
polynomial of minimal degree ihN k[z;] and letg; be the square-free part gf, for 1 < i < n.
Then

VI=T+{g1,....90).

Each of the polynomialg; can be computed by computing a generating system of the elimi-
nation ideall N k[z;].

As will be pointed out further on in this section, Grobner Basis Theory provides a simple
algorithm which, if provided with a generating system of an ideal, can be used to compute
generating systems of elimination ideals of that ideal. Together with Lemma 3.20, the algorithm
can be used to compute a generating system of the radical of a zero-dimensional ideal.

The following theorem can be found ESox et al., 1996, Proposition 16, Chapte}. 4
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Theorem 3.21 (Radical Ideal Intersection).If 7 and.J are radical ideals of:[X] then/ N J is
also a radical ideal of;[X].

In general, it does not hold that-J is radical if and.J are radical. For example, |ét= ()
andJ = (z +?), thenI andJ are radical butl + J = (z,v +y?) = (z, 2 — 2 +9°) =
(z,y*) is not. However, ifl andJ are zero-dimensional radical ideals then we can prove that
for special cases their sum is zero-dimensional and radical. This is formulated as the following
proposition which will turn out to be useful in the following chapter.

Proposition 3.22 (Radicality). Let m be a positive integer. For each positive integeless
than or equal tom let X; be a non-empty set of variables. Furthermore, Xfet= U”, X;, let
R = k[X], let I; be a zero-dimensional radical ideal 6fX;] and letR; be theR-module ofl;,
for 1 <i < m. Finally, let.J C k[X]| be the ideal given by

Then either/ is inconsistent ot/ is a zero-dimensional radical ideal &.

Proof. Assume// is consistent/; is zero-dimensional and radical. By Lemma 3.20;ontains

a non-constant square-free polynomial of minimal degreg[in |, for each of the variables
r; € Xy, for1 < ¢ < m. Note thatl; C R; C J, for1 < i < m. Therefore,J also contains a
non-constant square-free polynomial of minimal degred:in, for each of the variables € X .

J is consistent and contains a non-constant square-free polynomial of minimal degfeg in
for each of the variables € X. Therefore,J N k[z] contains a unique non-constant square-free
polynomial of minimal degree ik[z], for eachz € X. It now follows from Lemma 3.20 that

is zero-dimensional and radical. O

3.2.7 ldeal-Variety Correspondence

In this section we shall study the relationship between ideals and varieties in greater detail. In
particular we shall study the relationship between radical ideals and varieties, the relationship
betweenintersectionof two ideals and the union of their varieties, and the relationship between
the sumof two ideals and the intersection of their varieties.

Radical Ideals and Varieties

The following theorem is important because it provides information about the structure of van-
ishing ideals.

Theorem 3.23 (Hilbert’s Strong Nullstellensatz).Let k£ be an algebraically closed field. Ifis
an ideal ofk[X] then the radical off and the vanishing ideal of the variety bfare equal, i.e.

VI =1(V(I)).
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The reader is referred {€ox et al,, 1996, Hilbert’s Strong Nullstellensatz, p. 17dr proof
and further details.

Hilbert's Strong Nullstellensatz (Theorem 3.23) relates ideals, varieties, and their radicals.
The following theorem provides us with more information about their relationship. The reader
is referred to[Cox et al, 1996, Ideal-Variety Correspondence Theorem,p] @6 proof and
further detalils.

Theorem 3.24 (Ideal-Variety Correspondence)Let & be an algebraically closed field, then
the maps
affine varieties— radical ideals

and v
radical ideals— affine varieties

are inclusion-reversing bijections which are inverses of each other.

The theorem allows us to transform radical ideals to varieties and back without losing infor-
mation. We shall frequently make use of this relationship.

Example 3.25 (Ideal-Variety Correspondence)Let & = C, and letl = (z?(z — 1)), let

J = (z(x—1)),and letK = (z) be ideals of[x]. Then/ C J C K, and it follows from the
first part of Theorem 3.24 that (1) 2 V (J) 2 V (K). The following demonstrates that this is,
indeed, true.

V() = {01}
10,1}
V()
{0,1}
{0}

= V(K).

U

U

Note that/ is not radical, whereag and K are. Since/J C K, it follows from the second part of
Theorem 3.24 that (J) O V (K). The following demonstrates that this is, indeed, true.

V(J) = {0,1}

o> {0}
= V(K).

Intersection of Ideals

Another interesting relationship is that between the intersection of ideals and the union of their
varieties. The following theorem is proved[i@ox et al., 1996, Chapter 4.3, Theorem]15

Theorem 3.26 (Intersection versus Union)If I and J ideals ofk[X] then

V(INJ)y=V{I)uV(J).
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This equivalence also will turn out to be very convenient. Provided we have an algorithm for
ideal intersection, we can compute a generating system of an ideal whose variety is the
union of the varieties of two other idealsand.J. The relationship will allow us—as we shall
see in the following chapter—to “translate” a constraint to an ideal. As will be demonstrated in
Section 3.4.5, a simple algorithm to intersect two ideals does, indeed, exist.

Example 3.27 (Intersection of Ideals versus Union of Varieties)Let I = (x — 1) andJ =
(x —2)then

VinJ) = V({((z-1)(r-2)))
= {12}
= {11u{2}
= V{z-1)uV({(z-2))
V(I)UV(J).

The first equality is justified because the intersectioh ahd.J contains all polynomials which
are in/ (i.e. are a multiple of — 1) and also inJ (i.e. are a multiple of — 2).

In general, it can also be shown that'ibnd.J are ideals the’V (I N J) = V (I - J), where
I - Jistheproductof I andJ,i.e.T-J ={ij : (i,j) € IXJ}. Note that even if and.J are
radical this does not always mean thhat J = I - J. Forexample{z) N {z) = (z) # (2?) =
(z)-{z).If I andJ are radical ideals theh- J C I N J. The reader is referred {€oxet al,
1996, Chapter 4]3or further information.

Sums of Ideals

The following theorem is proved ifCoxet al, 1996, Chapter 4.3, Theorerh 4

Theorem 3.28 (Sum versus Intersection)lf / and.J ideals ofk[X] then
VUI+J)=V{I)nV(J).

As already indicated we shall demonstrate further on in this thesis how to convert a constraint
to an ideal. The relationship between the sum of two ideals and the intersection of their varieties
will allow us to construct an ideal whose variety is equal to the solutions of a constraint network.

Notice that from an intuitive point of view it is pretty easy to see that Theorem 3.28 must,
indeed, hold. The common zeros of two sets of polynomials are equal to the common zeros of
the union of those sets, which in their turn are equal to the intersection of the common zeros of
those two sets.

Example 3.29 (Sum of Ideals versus Intersection of Varieties (1)Let k = C, let [ =
(z(x—1)), and letJ = (z(zr —2)) be ideals ofk[z], thenV = V(I) = {0,1}, and
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W = V(J) ={0,2}. According to Theorem 328 (I +J) = VnNW = {0}. The fol-
lowing demonstrates that this does, indeed, hold.

V(I+J) = V

Example 3.30 (Sum of Ideals versus Intersection of Varieties (2)Let/ = (z(x — 1),y —x) C
klx,ylandJ = (x(z + 1),y + x) C k[z,y]. Itis not difficult to see thaV¥ (/) = { (0,0),(1,1) }
and thatv (J) = {(0,0),(—1,1) }. Furthermore,

V({I+J)= x(x—1),y—z,xz(z+1),y+x))
(

r—1),y—2)/2+ (y+2x)/2,z(x+ 1),y +z))

r—1),y,z(x+1),y+z))
r—1),y,z(x+1),z))

8

(x—1)
(z —1)
(x —1)
(z—1)

~—

)
}
(1,1)30{(0,0),(=1,1)}

\—/\—/Q

Distributive Property

In this section we shall prove a proposition about zero-dimensional radical ideals which will be
needed in the following chapter. Before we prove the proposition is true, we present the following
lemma, which is a special case of Proposition 3.22.

Corollary 3.31. Let I and J be zero-dimensional radical ideals bfX], then eitherl + J is
inconsistent or is a zero-dimensional idealkgX |.

Proof. Trivial. O

Proposition 3.32 (Distributive Property). If 7, J and K are zero-dimensional radical ideals of
k[X] then
INJ+K)=(InJ)+ (INK).

Proof. AssumeJ + K is inconsistent. By Hilberbert's Weak Nullstellensatz (Theorem 3.7),
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J 4+ K = (1). Therefore,

IN(J+K) = In(1)

(J+ K)
J+1-K
C (InJ)+({UNK).

I
1
= 1-(1)
I
1

The reverse inclusion also holds, becaiise(J + K) contains/ N .J and containd N K. By
virtue of it being an ideal] N (J + K') must therefore also contaid N J) + (I N K).

AssumeJ + K is consistent. The ideal-variety correspondence (Theorem 3.24) allows us to
derive the following equivalence betwe®n7 N (J + K)) andV ((INJ) + (I N K)).

VIN(J+K)) = VI)UV(J+K)
= V() U (V(J/)nV(K))
= (V(HuV({)n(V({I)UV(K))
= VUNnJ)NnV({INK)
= V((InJ)+ (INK)).

The varieties of the ideals N (J + K) and(I N J) + (I N K) are equal. We shall use the
ideal-variety correspondence (Theorem 3.24) to prove that the two ideals are equal by showing
that they are radical.

By Corollay 3.31,J + K is radical. ! is also radical and it follows from Theorem 3.21 that
In(J+ K) is radical. By Hilbert's Weak Nullstellensatz/ N J) + (I N K) is consistent
becausd N (J + K) is consistent and the varieties of the two ideals are equal. By Theorem 3.21,
I'nJandl N K are zero-dimensional and radical. We conclude the proof by observing that
(INJ)+ (InK)isradical by Corollay 3.31. O

Note that in general the distributive property may not always hold if the ideals are not radical
or zero-dimensional. For example, let= (y + x ), let J = (z?), and letK = (y?). Then

InJ = {(y+a)z*);

INK = <(y+x)y2>,
(INS)+(INK) = ((y+)2® (y+2)y*);
IN(J+K) = (y+z)n({y*)+{(z*))
= (y+z)n((y* —2*)+(2*))
= (y+a)N{((y+2)(y—2))+(2?)),

and itis not difficult to see thatn (J+ K') contains( (y + z)(y — x) ), whereagINnJ)+ (INK)
does not.
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3.3 Grobner Bases

3.3.1 Introduction

In this section we shall studgerm ordersand Grobner bases Like the previous sections our
treatment will be informal.

Grobner bases are finite generating systems of polynomial ideals with the additional property
that theleading termsof their members with respect totarm ordercharacterise the leading
terms of the members of the ideal with respect to the same term order. It will turn out that this
allows for the decision and solution of many problems in ideal theory.

3.3.2 Term Orders

Term orders are to Grébner bases what variable orderings are to the Gaussian Elimination Al-
gorithm. They are a generalisation of variable orders (orders on linear terms) in the sense that
they are also orders on non-linear terms. Term orders preserve the ordering which is induced by
division, thereby allowing for a generalisation of quotient and remainder (with respect to a term
order). In our presentation we shall not need quotients and remainders with respect to term or-
ders. Instead, we shall rely on the notiomairmal formof a polynomial with respect to a finite
set of non-zero polynomials and a term order. The remainder of this section is an introduction to
term orders and normal forms. The reader is referrdd@exker and Weispfenning, 19pand
[Coxet al, 1994 for further information about division with respect to a term order.

Let X = {z,...,2,} be a non-empty set of variables. The set containing all power-
products of the members of will be denotedT . Formally,

Ty ={a" x -+ xai" : (ag,...,a,) e N'}.

Definition 3.33 (Term Order). Let X be a non-empty set of variables.térm order< on Ty is
a total order orT x with the additional property thatis the smallest member @fy with respect
to < and that for every:, v € T it holds that whenever < v it must be true thatu < tv for
everyt € Tx.

Example 3.34 (Lexicographical Term Order). Let X = { u,v } and let< be the order off
such thaw1v® < w20 if either (a; < ay) or (ay = ap A 31 < (32). Then< is a term order
onTx. For obvious reasons it is called tlexicographicalterm order such that < v.

For example, le be the term order suchthat< z < 22 < -+ <y < ay < 2%y < ---. It
is the lexicographical term order such thabrecedeg.

Example 3.35 (Total Degree Order).Let X = {«,v } and let< be the order off' x such that
utv®t < u20? if either (ay + 31 < ag + B2) Of (a1 + B1 = as + B2 Ay < ). Then<is a
term order orl'y. It is called thetotal degreeorder such that < v.

For example, le be the term order suchthat< z <y < 22 < a2y < y? <23 < ---. Itis
the total degree order such thaprecedeg.
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A monomialis the product of a non-zero constant and a term. The most significant term of
a non-zero polynomial with respect to a term order is calledgading termof that polynomial
with respect to that term order. The leading term of a non-zero polyngmiath respect to
the term order will be denotedt_ (p). Theleading monomiabf a non-zero polynomial with
respect to a term order is the monomial of that polynomial whose term is the leading term of that
polynomial with respect to that term order. The leading monomial with respect to< will
be denotedm_ (p). Theleading coefficientf a polynomialp with respect to a term ordex is
equal tolm_ (p)/ 1t (p). The leading coefficient af with respect to< will be denotedc, (p).

Let- | - be the relation defined on terms such thatv if « dividesv. Furthermore, let{ -
be the relation defined on terms suchwv if « does not divide.

The following defines a normal form of a polynomial with respect to a set of polynomials
and a term order.

Definition 3.36 (Normal Form). Let X be a finite set of variables, let be a term order offi y,
let £ be a finite subset df[X] \ {0 }, and letp € k[X] a polynomial. Thery € k[X] is called a
normal formof p with respect tof" and< if ¢ —p € ( F') and for allf € F none of the terms of
q are divided byit_(f).

It is important to notice that normal forms are not unique. For examples le¢ the lexi-
cographical term order such that< y, let F = {y* — z,y — z }, and letp = y?, then both
r=p— (y> —x)andz? = p — (y + x)(y — =) are normal forms of with respect toF’ and <.

3.3.3 Definition of Grobner Bases

In this section we shall define the notion osadbner basisand that of aeduced Grdobner basis
of an ideal with respect to a term order.

Definition 3.37 (Grébner Basis).Let k£ be a field,X # () a set of variables] C k[X] an ideal
and< aterm order. Asetz C I\ {0} is called aGrobner basif I with respect to< if the
cardinality of G is finite and if

(Vf € I\N{0})(3g € G)(It.(g) [ 16, (f))-

Let < be a term order and l&¥ C k[X| be a Grobner basis of some ideal with respect to
<. Finally, let f € k[X] be any polynomial. There exists an algorithm for the computation of a
normal formp of f with respect ta=7 and<. It can be shown thatis unique up to multiplication
by a constant irk. The reader is referred {@Becker and Weispfenning, 1993, Chaptérfar
further details. From now on we shall writé. (G, f) for “the” normal form of f with respect to
G and=< and we shall assume that it is monic or zero.

The set containing the terms of a polynomjak denotederms( f).

Definition 3.38 (Reduced Grobner Basis)Let k be a field, letX # () be a set of variables, let
I C k[X] be an ideal and lek be a term order. A Grébner bagisC I\ {0} of I with respect
to < is called areduced Grobner basisf I with respect to< if each of its members is monic
and

(Vg € G)(Vf € G\{g})(Vt € terms(f))(It.(g) 1 1).
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Let < be a term order and lgt be a finite generating system of an idéalGiven F' and
<, the Buchberger Algorithntan be used to compute a Grobner ba&sisf I with respect to
<. GivenG and< it is a straightforward exercise to compute a reduced Grdbner bagis of
with respect to<. The reader is referred f@ecker and Weispfenning, 1993, Chaptérfar
further details. For efficient implementations of the Buchberger algorithm the reader may wish
to consuliBecker and Weispfenning, 1993, Chapterl @bd[Giovini et al,, 1991.

3.4 Grobner Basis Algorithms

3.4.1 Introduction

In this section we shall study Grobner basis algorithms to solve each of the following problems:

ideal membership problem Given a finite generating system of an idéal %[X| and a poly-
nomialp € k[X], decide ifp € I;

consistency problemGiven a finite generating system of iddalC k[ X], decide if] is consis-
tent;

variable elimination Given a finite generating system of iddal_ k[ X] and a subsédt’ of X,
compute a generating systemiof £[WW];

ideal intersection Given finite generating systems of finitely many ideals, compute a generating
system of their intersection;

zero-dimensionality decision problemGiven a finite generating system of an idéaif k[X],
decide if] is zero-dimensional;

cardinality Given a finite generating system of zero-dimensional ideal k[ X |, compute the
cardinality of the variety of ;

extension Given afinite generating system of a zero-dimensional radical ideak [z, . . ., x,],
compute a Grébner basis which contains generating systems of each of the elimination ide-

alsI Nkfxy,...,xy,), for1 < m < n. It will be shown that such Grobner bases allow
for the extension of partial solutions of the form = v, ..., 2,1 = v,,_; to partial
solutions of the formxy = vy, ..., 2, = U, fOrm =2, ..., n.

We shall consider these problems and the Grébner basis algorithms to solve them in the following
sections.

3.4.2 Ideal Membership

In this section we shall study thdeal membership probleme. we shall study the problem of
deciding whether a given polynomigle k[X] is a member of a given ide&lC k[X].
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Theorem 3.39 (Ideal Membership Problem).Let < be a term order, leG be a Grobner basis
of 7 with respect to<, and letf € k[X]. Thenf € [ if and only ifnf. (G, f) = 0.

The reader is referred tBecker and Weispfenning, 1993, Theorem 5.f& proof and
further details.

Note that Theorem 3.39 provides an algorithm for the ideal membership problem. To decide
if fisinthe ideal generated by, select any term ordex, compute a Grobner bagisof ( F')
with respect to< and compute the normal form gfwith respect to< andG. Thenf is in the
ideal generated by’ if and only if the normal form is zero.

3.4.3 Consistency of Ideals

In this section we shall briefly discuss an algorithm to decide if ideals are consistent.

Remember that an ideal is called consistent if it does not cohtma inconsistent otherwise.
Theconsistency probleto decide if the ideal is consistent is nothing but the ideal membership
problemf € I for the special cas¢ = 1. If < is a term order, and: is a Grobner basis of
with respect to< then! is consistent if and only ifif L (G, 1) = 0.

Reduced Grobner bases of inconsistent ideals are all eqgdl fo Reduced Grobner bases
of consistent ideals do not contain|f the reduced Grobner basis bis available this makes it
even easier to decide the consistency problerh of

3.4.4 Elimination Ideals

In this section we shall study the problem of how to compute generating systems of elimination
ideals.

Let X = {z,...,z, } be a non-empty set of variables, let_ £[X] be an ideal, and lek
be the lexicographical term order such that< z; < i < j, for1 <4, j < n. Furthermore,
let G be a Grobner basis dfwith respect to<. Finally, letm be any positive integer less than
or equal ton and letf be any non-zero member 61 kx4, ..., z,,]. By definition,G contains
a member whose leading term with respecktdivides the leading term of with respect to<.
What is more, ifg € G and iflt_(g) | lt_(f) then each of the terms in— 1m_(g) are smaller
(with respect to<) thanlt_(g) and it follows thaty € I N k[zy,...,z,]. Clearly,G contains
Grobner bases of each of the elimination iddafsk[z1, . . ., x,,], for 1 < m <n.

Variable elimination has become a straightforward exercise. To eliminate the vafidbies
X from I compute a Grébner basis biwith respect to any lexicographical term ordewhich
has the property that the variablesin\ 17 are the least significant ones. Next eliminate from
the Grobner basis the non-constant polynomials which afgXij but not ink[X \ W]. The
resulting set is a Grobner basisiof £[X \ W] with respect to<.

3.4.5 Ideal Intersection

In this section we shall provide an algorithm to compute the intersection of ideals. The reader is
referred to/Becker and Weispfenning, 1993, Corollary 6.26r a proof.
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The following theorem describes a relationship between a set of ideals and the intersection
of its members.

Theorem 3.40 (Intersection of Ideals).Let X # () be a finite set of variables, and Iét=
{1,...,1, } be anon-empty set of ideals/igfX|. Furthermore, let” = { y,...,y, } be a set
of variables such that” and X are disjoint. Then

()L = kXS,

el

where
S = <1—Zy¢>+2y,~1i.
=1 =1

With the tools presented so far, this makes it a trivial exercise to compute a generating system
of the intersection of a set of ideals. First compute a generating systéhaond then use the
algorithm sketched in Section 3.4.4 to eliminate frorthe variables that are iHi.

Example 3.41 (Ideal Intersection).Let V = {(1,1),(4,2)} C k% Note thatV can also be
interpreted as a constraint on two variables, sandy. In this example we shall show how to
construct a generating system of the vanishing ided of k[z, y].

The point(1,1) corresponds to the simultaneous “assignment= 1 andy = 1, i.e. it
corresponds to the maximal ideat — 1,y — 1). Similarly, (4,2) corresponds to the maximal
(z —4,y —2). Therefore,

Vo= {(1,1),(42)}
= {(L1)tu{(42)}
= V{z—-Ly-1)UV({z—-4y—2))
= V{z—1Ly—1)Nn{x—4,y—2))
V((F)),

whereF' can be computed using Theorem 3.40. The application of Theorem 3.40 and variable
elimination with respect to a lexicographical term orgesuch that: andy are the least signifi-
cant variables and such that< y leads to:

F:{x2—5x+4,3y—x—2}.

It is left as an exercise to the reader to verify that V ({ F')).

3.4.6 Zero-Dimensional Ideals

In this section we shall present the notionrefluced term®f an ideal with respect to a term
order, and theorems about and algorithms for zero-dimensional ideals. We shall first present the
Triangular Form Theorem. It relates the cardinality of the variety of a zero-dimensional ideal
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and the leading terms of its Grébner bases. Next, we shall define the notiorreditieed terms
of an ideal with respect to a term order. Finally, we shall present the Counting Theorem which
provides an algorithm to compute the cardinality of the variety of a zero-dimensional radical
ideal by inspecting the leading terms of a Grébner basis of that ideal.

The following theorem provides an algorithm for the detection of zero-dimensional ideals.

Theorem 3.42 (Triangular Form). Let X = {zy,...,z, }, let] be a proper ideal of:[ X], and
let < be any lexicographical term order on the variablesin Then! is zero-dimensional if and
only if for eachr; € X every Grébner basis df with respect to< contains a polynomial whose
leading term with respect te is of the forme; for some positive integer;.

The reader is referred f@ecker and Weispfenning, 1993, Theorem 6(54and (iv)] for
proof and further details.

Example 3.43 (Triangular Form). Let X = { xq, z1, 25 }, and let/ C k[X] be the ideal gener-
ated byG, where
G ={zo, 1 + 0,72 + 71 + 70 }.

G is a Grobner basis with respect to the lexicographical term cxdeherezy < 1 < zs. Itis
not difficult to see thaf is zero-dimensional and that(G) = { (0,0,0) }. The leading terms
of the members of the Grobner basis with respecktare given byz,, x; andx,. For every
memberz; of X the basis contains a polynomial whose leading terms with respecidof the
form z;, i.e.x}. By Theorem 3.47 is zero-dimensional.

Definition 3.44 (Initial Ideal). Let < be a term order, and Idtbe an ideal of[X]. Theinitial
ideal of I with respect to< is the ideal which is generated by the leading terms with respect
to < of the non-zero members éf The initial ideal of/ with respect to< is denotedn_ (/).

Formally,
in_ (1) = ({1t.(f) : feI\{0}}).

Definition 3.45 (Reduced Terms).Let I C k[X] be an ideal anek a term order. Theeduced
termsof I with respect to< are the terms iff x which are not inn_ (/).

It follows from the definition of a Grobner basis that the reduced termisvaith respect to
< are the monomials of| X | that cannot be divided by any of the leading terms (with respect to
<) of the members of-.

The following theorem provides an algorithm for computing the cardinality of the variety of
a zero-dimensional radical ideal.

Theorem 3.46 (Counting).Let k be a any field, lef< be the algebraic closure df, let < be a
term order, and lef be a zero-dimensional ideal éfz,, . .., x,]. The number of common zeros
of the members afin K is less than or equal to the number reduced termbswith respect to
<. If k is perfect and is radical then equality holds.

The reader is referred tiBecker and Weispfenning, 1993, Theorem §.8% proof and
further information.
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Example 3.47 (Counting).Let X = {z,y}, and let< be any term order such that < y.
Furthermore, let

2 .
g1=T — I

g2 =Y — T
G:{91792};
I=(G).

G is the reduced Grobner basis bivith respect to<, G does not contain, and thereford is
proper. Note thaf contains the square-free univariate polynomiagt — 1) = z*> — z. I also
contains the polynomial

grepytr—1)=2>-a+y—z)(y+tz—1)
:xQ—x+y2—x2—y+:p
=y’ —y
=yly—1),

which is also square-free. It follows from Lemma 3.20 thas zero-dimensional and radical.
Therefore, Theorem 3.46 can be applied. The reduced terthsvith respect to< can be read
off from the Grobner basi&. They are the same as the term&ip which cannot be divided by
any of the leading terms of the members(divith respect to<. They arel andz. It follows
from Theorem 3.46 that the variety dfcontains two members. Indeed, the zeros of ¢, are
given by0 and1 and for each zero of in g, there is exactly one zero fgrin g;. If x = 0 then

y = 0andifx = 1 theny = 1. The common zeros dfare(0,0) and(1,1). There is one zero
for every reduced term af with respect to<.

3.4.7 Extension of Solutions

In this section we shall study a proposition which will be used in Chapter 4. The proposi-
tion provides a sufficient condition for the extension of partial solutions. Before we present the
proposition we recall two theorems which were presented earlier in this chapter.

Remember that Theorem 3.14 (Extension Theorem) provides sufficient conditions for the
successful extension of solutions which vanish in elimination ideals to solutions which vanish
everywhere. Theorem 3.42 (Triangular Form Theorem) provides an algorithm to decide if proper
ideals are zero-dimensional. For every idéat k[X] and every lexicographical term order
the Triangular Form Theorem states tlhas zero-dimensional if and only if, for eveny € X,
the reduced Grébner basis bwith respect to< contains a polynomial whose leading term with
respect to< is equal tar;", for some positive integet;.

We can combine these theorems for the following proposition.
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Proposition 3.48 (Extension).If I is a proper zero-dimensional ideal bfz1, . .., z,] then any
common zera;, = vy, ...,Tm-1 = Uy_1 Of the members dfN k[xy, . .., z,,_1] can be extended
to a common zero;, = vy, ..., T, = v, of the members df N k[zy,..., z,], for1 <m < n.

Proof. Let < be the lexicographical term order such thatk z;, <= i < j. By the Triangular
Form Theorem, for every < i < n, the reduced Grébner bagis of I with respect to<
contains a polynomial whose leading term with respeet s of the formz;, for somex; > 0.

The leading coefficients of these polynomials cannot vanish and by the Extension Theorem the
extension of partial solutions ihN k[xy, ..., z,,-1] to partial solutions i N k[zy,...,x,,] iS

guaranteed, for < m < n. O



Chapter 4
CSPs In Solved Form

4.1 Introduction

In this chapter we shall study a new technique to transfornCg®with extensional constraints
to aCSPwhich is indirectionally solved fornwith respect to a certain variable ordering and to
aCsPwhich is inglobally solved formBoth kinds ofCSPs guarantee backtrack-free search and
guarantee that all solutions can be found without encountering “dead-ends.”

The process of transforming@sPto aCSPwhich is in directionally solved form consists of
three steps. The algorithm for the computatiol€&fs in globally solved form is almost similar,
except for the last step. The three steps rely heavily on the relationship between constraints,
varieties, ideals, and Grobner bases. First,@s®is transformed to a generating system of a
polynomial ideal. Next, the system is transformed to the reduced Grdbner basis of its ideal with
respect to a lexicographical term order. Finally, the reduced Grobner basis is transformed to a
CSP

The remainder of this chapter is as follows. In Section 4.2 we shall define the notions of a
CSPin directionallyandglobally solved formdescribe the properties of suClsPs, and discuss
the related literature. This is followed by Section 4.3 where we shall recall three theorems from
the previous chapter which shall be required in the remainder of this chapter. In Section 4.4
we shall discuss the relationship between constraints, varieties and ideals. We shall present the
algorithm for the computation a&SFs in directionally solved form and shall present a proof for
the correctness of the algorithm in Section 4.5. Examples of the application of the algorithm to
some problems will be presented in Section 4.6. We shall present our concluding remarks and
provide suggestions for future work in Section 4.7.

4.2 Basic Definitions

In this section we shall define the notion o€&Pin directionally solved form and that of@SP
in globally solved form, discuss the relevant literature, and mention possible applications.

46
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Definition 4.1 (CSPin Directionally Solved Form). Let X = {zy,...,xz, } be a non-empty
set of variables, lef = (X, D,C') be aCSPR, and let< be an ordering on the variables i
suchthatr; < z; <= i < j. ThenC is in directionally solved form with respect te if either:

e Cis unsatisfiable and = C{,,, € C; or

e C is satisfiable, there is a constraint of the fofm¢ C(,,; € C, and for all integers,
1 <i<n,if (vy,...,v;_1) satisfie then there exists a memberc D(z;) such that
(v1,...,v; ) also satisfie§.

A CSPin directionally solved form can be solved efficiently in the sense that no backtracking
is required in the process of finding one of its solutions or deciding that no such solution exists.
All its solutions can be found without encountering dead-ends by extending partial solutions.
If the CSPis unsatisfiable then this can be found out easily by inspecting the unary constraint
(node-consistency) on the least significant variable with respec¢t to

Example 4.2 (CSP in Directionally Solved Form). Let X = {x, 21, x9,23 }, let < be the
order such that; < z; <= i < j,and let( X, D,C") be theCSP, where

C= { 0{330}7C{l?o,fm}?C{x1,x2}7c{x1,x2,x3} } ;

D(z9) ={0,1};
D(xy) ={0,1};
D(xz) ={0,1};
D(z3) ={0,1};
Crapy = {0,1};

Clagay = {(0,0),(0,1),(1,1) };
Claray =1{(0,0),(1,1) };
Clarzsssy =1(0,0,0),(1,1,1) }.
The CSPis in directionally solved form with respect to. The reasons for this are as follows:
1. The smallest variable iX with respect to< is zy. The constrainCy ,,, is non-empty.

2. Every tuple( vy, ...,v,_1) which does not violate any constraint can be extended to a
tuple (o, ..., v, ) Which does not violate any constraint, for< m < 3. For example,
none of the members i6';,,, violate any constraint. Every member 6f ., can be
extended to art z, x; )-tuple which does not violate any constraint. The set containing
these tuples i€’ ,, .., . Every tuple inC,, ., } can also be extended to am, z1, x5 )-tu-
ple which does not violate any constraint. The set containing all these tuples is given by
{(0,0,0),(0,1,1),(1,1,1) }. Each member of this set can in its turn be extended to
an (xo, r1, x2, x3 )-tuple which does not violate any constraint. The set containing these
tuples is given by{ (0,0,0,0),(0,1,1,1),(1,1,1,1) }. The members of this set are the
solutions of( X, D, C').
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The purpose of a backtrack-free search is to compute a single solution without encountering
a dead-end or to decide that no such solution exists. Freuder provides sufficient conditions and
an algorithm for the case where the constraint-graph ofdfieis a tree[Freuder, 1982 He
generalises this for arbitrary bina®8Fs by relating the width of the constraint-graph to the level
of (4, j )-consistency of th€ SP[Freuder, 198b

As observed by Dechter and Pearl weaker properties may also ensure backtrack-free search
[Dechter and Pearl, 198Barhey propose directional consistency methods for bigsys.

Dechter and Van Beek seem to have been the first to pose and answer the question of how
to compute directionally solve@SPs [Dechter and van Beek, 1995; 1997They present an
algorithm calledDRC (Directional-Relational-Consistency) which can transf@my CSPto an
equivalentCSPwhich is in directionally solved form. ThelCSPs are created by the repeated
addition of constraints and repeated restriction of constraints by removing those partial solutions
that cannot be extended. @SPis in globally solved formif it is in directionally solved form
with respect to all variables orders. Dechter and Van Beek also present algaminiAdap-
tive-Relational-Consistency) to computsFs in globally solved fornfDechter and van Beek,

1995.

Besides differences in the domain of computation—we have to translate to and from the
polynomial ring, whereas Dechter and Van Beek do not—the main difference is that Dechter and
van Beek repeatedly intersect, join, project, and add constraints, whereas we use a Grébner basis
approach. Further on in this chapter we shall demonstrate that by changing one step in our
algorithm we can computeSPs which are in globally solved form.

4.3 Related Mathematics

In this section we shall briefly recall three theorems from Chapter 3 upon which we shall heavily
rely in the remainder of this chapter. The first theorem is the Triangular Form Theorem (The-
orem 3.42). It provides an algorithm for the detection of zero-dimensional ideals. The second
theorem is the Counting Theorem (Theorem 3.46). It can be used to determine the cardinality
of the variety of a zero-dimensional radical ideal. The third theorem i€#tension Theorem
(Theorem 3.14). Given aslimination orderit provides a sufficient condition for the extension

of (partial) solutions for the first — 1 variables to (partial) solutions for the firstvariables.

4.3.1 Triangular Form Theorem

The Triangular Form Theorem (Theorem 3.42) provides a relationship between zero-dimensional
ideals and the leading terms of the members of a Grébner basis with respect to a lexicographical
term order of that ideal. |7 is the Grébner basis of some iddaC k[zy, ..., x,] with respect

to a lexicographical term ordex then is zero-dimensional if and only if fot < i < n, G
contains a polynomial whose leading term with respeet is of the formz", for somex; > 0.

%
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4.3.2 Counting Theorem

The Counting Theorem (Theorem 3.46) relates the cardinality of the variety of a zero-dimen-
sional radical ideal and the reduced terms of the ideal with respect to a term oreas. dfterm

order then the number of common zeros of the members of a zero-dimensional radicalatieal
k[X] is equal to the number of reduced termd afith respect to<. This number is equal to the
number of terms il x that cannot be divided by any of the leading terms with respest ¢t

the members of the Grobner basis/okith respect to<.

4.3.3 Extension Theorem

The Extension Theorem (Theorem 3.14) provides a sufficient condition to ensure the extension
of partial solutions. As a special case (Proposition 3.48) it guarantees thatfproper zero-di-
mensional ideal ok[zy, ..., x,] then any common zerovy, ..., v,1) Of I Nk[xy, ..., zp_ 1]

can be extended to a common zéxq, ..., v, ) of I Nk[zy, ..., z,], forl <m <mn.

4.4 ldeals, Varieties, and Constraints

This section uses the ideal-variety correspondence discussed in Section 3.2.7 to translate finite
constraints to varieties and polynomial ideals and vice versa. The theory to be presented allows
for the transformation of finit&€ SPs to polynomial ideals and vice versa. The presentation is
of an informal nature. The reader is referred @mx et al., 1996, Chapter for a more formal
presentationt.As usual k denotes the field of the complex numbers.

In the following, letX = {z,...,z, } be a finite set of variables aridX, D, C') a finite
CSP. As usual we shall assume that the order on the variables is such thacedes;; if and
only if ¢ < 5. Without loss of generality we shall assume that the domains of the variahkés in
are subsets of.

It is recalled that a proper ideéalof ring R is called anaximalideal of Rif I +J € { I, R}
for every ideal/ of R. Maximal ideals ofk[x, ..., z,| are of the form{ z; — vy,..., 2, — v, ),
for suitably choseny, ... ,v, € k. Their varieties are of the forfi( vy, ..., v, ) }, i.e. each such
ideal corresponds to a single pointif.. Note that maximal ideals @f[ X | are radical.

Letn be a positive integer, leY = { x4, ..., z, }, let S be a non-empty set of variables, and
let Cs be a non-empty constraint il. Every(v;,,...,v;, ) € Cg corresponds to some point
(viy,...,v;,, ) of k™ and hence with the maximal (as well as radical) ideal

<$i1 — Uiy -y Ty, _Uim>

of k[S]. Cs can therefore be described as follows:

Cs = U V({(Ziy = Vig, -3 @iy — Vi ) - (4.1)

(Vigse Vi, JECs

INote tha Coxet al, 1996, Chapterlddoes not cover constraints aescover the relationship between ideals
and varieties in great detalil.
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Equation (4.1) states théls is the union of finitely many varieties @f". The union of varieties
is again a variety. Thereforés is a variety ofk™. Remember that the union of the varieties of
ideals is equal to the variety of the intersection of those ideals (Theorem 3.26} £et[X],
let) c S C X, and letJ be an ideal of[S]. Itis recalled that/rz C k[X] is the R-module of
ideal J. With these definitions, Equation (4.1) is tantamount to:

Cs=V(I),

wherel C k[S] is given by:
I'=( ﬂ I({v}))xr.
veCyg
Note that! is the intersection of radical ideals. By Theorem 3.2 radical.C's is non-empty,
and by Hilbert's Weak Nullstellensatz (Theorem 3.7)s consistent. Sinc® (I) = Csg, I is
zero-dimensional. Léts C k™ be the variety of ;.
From now, for evenyCs € C, let Vs denote the variety i™ which can be constructed from
the constraints as laid out in the previous paragraph, i.e. let

VS =V (ﬁ(vil 77777 Vi JECS <.Ti1 — Uiy o ooy T4y, — Y4y >R) .

From now onVs will be called thevariety of the constraint’s. The setS C k™ of values which
satisfy theCSPthat we started with is equal to the intersection of the varieties of the constraints
inC:

S= (] Vs (4.2)

It is recalled from Section 3.2.7 that the variety of the sum of ideals is equal to the intersection
of the varieties of these ideals. Therefore, Equation (4.2) is equivalent to

S=V ( > I(VS)> . (4.3)

CgeC

LetJ = I(S) C k[X]. Itis recalled from Chapter 2 that without loss of generality we can assume
that X = Uc,ecS. By Proposition 3.22/ is inconsistent or zero-dimensional and radical.

Example 4.3 (Constraint/Variety/ldeal Relationship). Let X = {z,y }, let D(z) = C(,) =
{—2,-1,0,1}, let D(y) = Cqyy = {1,2,3,4}, letCyy = {(1,1),(—-2,4)}, and let
C = {Cs},Ciyy, Cayy - Finally, letC = (X, D,C) be aCSP. The constraint’y .} cor-
responds to the variety;,, = {—-2,-1,0,1} Xk, i.e. it is the set of( x,y )-tuples where
x € {—2,-1,0,1} andy € k. It follows directly from the relationship between unions of
varieties and the variety of the intersection of their ideals that:

Cioy = {-2,-1,0,1}

= V{z+2)UV{z+1) )uUV{z))UV({(x—1))

= V{z+2)n{(z+1)Nn{z)Nn{x—1))
V({{((x+2)(x+1)(x—0)(z—1))).
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Therefore,
Viey =V ((Gay)g) CF
whereG/, is given by
Gy ={@+2)(z+1)(z-0)(z-1)}.

Similarly,
Vigyy =V (< Giyy >R) C K,
whereGy,y is given by
Gy ={-Dy-2)y-3)y—-4)}.

Using the same technique we can compute a generating system for the idgal,pfas
follows:

Wx,y}:{(1>1)’(_274)}
=V({(z—1Ly—1)Nn{z+2,y—4),).

We shall use the algorithms proposed in Section 3.4.4 and Section 3.4.5 to compute the intersec-
tionof (z — 1,y — 1), and(z + 2,y — 4),. The computation of the intersection proceeds as
follows. Letz; andz, be two new variables and let be the lexicographical term order such that

x <y <z < 2. Itis recalled from Section 3.4.5 thatifand.J are two ideals ok[z, y| then

INJ=klz,y)Nn({1—21— 22) + 211 + 22J).
The reduced Grobner basis of
(1—z1—2)+zn{(z—1Ly—1)+zn{z+2,y—4)
with respect to< is given by
{2 +2z-2,y+2—2,21—2/3-2/3, +2/3-1/3}.

Therefore,
(z—Ly—-1)N{z—2,y+4)=(2>+2—-2,y+2—2).

This allows us to conclude that

Viewy =V ((Giaw) )g) - (4.4)

whereGy, . is given by
{x2+x—2,y+x—2}.
Equation (4.2) states that the solutiafiof C are given by the intersection of the varieties

of the constraints ir”’. This is equivalent to Equation (4.3) which states tHas equal to the
variety of the sum of the ideals of the varieties of the constraing.ihet J be the sum of the
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ideals of the varieties of the constraints@fi.e.J = > .- 1(Vs). Furthermore, lek be the
lexicographical term order, such that< y. The Grobner basis of with respect to< is given
by:

{x2+x—2,y+x—2}.

It is the same as the generating system of the ideal;of, from Equation (4.4). It follows
immediately thatS = C,.,, and thatS are the solutions df.

Notice that theR-module of the ideal generated by the Grobner basis contaihs y ) .,
(Giyy ) and( Giayy ) .- ltcontains( Gy,y ) because:” + & — 2 = (z + 2)(x — 1) divides
(z +2)(x 4 1)(z — 0)(x — 1). It contains( Gy, ) . because

(P+z—-2,y+z-2) = (2-y)’+@2-y —-2,y+z—2)
= (Y —-by+4y+z—2)
= (y—-HYy-1,y+x-2)

and becauséy — 4)(y — 1) divides(y — 1)(y — 2)(y — 3)(y — 4). Itis left as an exercise to the
reader to prove the(tG{xvy} >R is also contained by thB-module of the ideal which is generated
by the Grobner basis.

In the previous paragraphs we have demonstrated how to transt8€ imto a generating
system of an ideal whose variety is equal to the solutions o€thie The following proposition
suggests an algorithm to get back from the generating system of an idea$tevehose solutions
are equal to the common zeros of the ideal.

Proposition 4.4. Let X = { z4,...,z, } be afinite set of variables such thB{x;) has a finite
cardinality for eachr; € X. Let F' C k[X] be a finite set of polynomials. Then there exists an
algorithm to computd/ (F) N X ,,ex D(z;).

Proof. First observe thatv,,...,v,) € V(F) N X,,exD(z;) ifand only if (vq,...,v,) €

X .,exD(x;) and each of the polynomials if" vanishes a{ vy,...,v,). Next observe that

X .,exD(x;) has a finite cardinality. The problem of finding the algorithm has been reduced to
the enumeration of the members ®f,.. x D(z;) and a finite sequence of tests to see if these
members are the zeros of the members of a finite set of polynomials. O

4.5 An Algorithm for CSPs in Directionally Solved Form

This section describes a transformation technique fromGsiywith extensional constraints to
an equivalenCSPwhich is in directionally solved form with respect to some ordering on the
variables. The resultin@SPcorresponds to a reduced Grobner basis with respect to a lexico-
graphical term order.

In the following, letn be a positive integer, leX = {xz,...,z,}, let (X,D,C) be a
finite CSP, let < be the lexicographical term order such that< --- < x,, and letS denote
the solution set of the€SP It is recalled from the previous section that every constréint
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corresponds to some variety € k™. The set of solution$ of the CSPcan be described as the
variety of the sum of the ideals of the varietiés i.e.

S:\/(Z 1(v5)>.
CgeC
The transformation is given by:

1. (a) ForeachCs € C' compute a generating systeBy C k[zy, ..., x,] for [(Vs). After

this step we have:
S=V ( > (Bs >> .

CseC

(b) Let Bx = U o Bs- After this step we have:

S=V({(Bx)).

2. (a) Compute the reduced Grobner basig of ( Bx ) with respect to<. We now have:

§=V({Gx)).

3. (&) For each polynomiaf occurring inGx, let S, denote its variables. Compute the
maximal (with respect to inclusion) subsﬁgg of polynomials inGx the variables
of which are given bys,. After this step we have:

5:v<Z<ng>>.

geGx

(b) If Gx = {1} then setC, , =  andC" to {Cizl} } Otherwise, for eaclB
computed in the previous step compute:

¢, =V (BS,) N X e, D),

where X is the Cartesian product operator. &t= {C’Sg g€ Gy } Finally, we
have

SV( > <C’Sg>>.

Cs,€C"

The resultingCSPcorresponds to”.
The bases3s in step 1.a can be computed by intersecting ideals. The constfé@pt&an
be computed by the algorithm suggested by Proposition 4. ¥ () is a variety with a finite
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cardinality, then/ = (W) is a zero-dimensional radical ideal. Theorem 3.14 (Extension Theo-
rem) and Theorem 3.42 (Triangular Form Theorem) guarantee that extending non-empty partial
solutions of elimination ideals of must succeed. Similarly, the existence of a unary constraint
for the smallest variable is guaranteed. ThereforeBeis in directionally solved form with
respect to<.

In this paragraph we shall describe how to compLs#s which are in globally solved form.
The change is very simple. Replace Step (2) by: “Compute a universal Grobner baBig pf
Here, auniversal Grébner basief an ideall is a set which is a Grébner basis bivith respect
to any term order. The interested reader is referrd@ézker and Weispfenning, 1993, pp. 514—
515 for a short introduction to universal Grébner bases andora and Robbiano, 1988or
more detailed information.

Grobner bases are difficult to compute. Given a generating systefra zero-dimensional
ideal it requires (worst case€) (d°™) time to compute the Grobner basis of the ideal generated
by F', whered is the maximum total degree of a monomialfinandn the number of variables.
However, the following observations may be made:

e Thetechniques presented work in any ring(| if £ is an algebraically closed field. Chang-
ing from an algebraically closed field to a finite field will not affect any of the results if
the field is sufficiently large to encode the members of the largest domain. The reasons
for this are two-fold. First, it can be shown that finite fields are perfect [Beeker and
Weispfenning, 1993, Corollary 7)8 Therefore, Lemma 3.20 remains valid. The second
reason is as follows. Our application of theorems (including the Counting Theorem) are
specialised for the case where the field of computation is algebraically closed. For the
case where the field of computation is finite our results still hold because all our ideals
are radical by construction and our operations (intersection and addition of ideals) do not
introduce zeros “outside” the field.

If pis a prime ther¥, = Z/ (p) is a finite field containing memberdCox et al,, 1997,

page 359 The method remains valid for the choice®yf X ] if p is a small prime greater
than or equal to the maximum domain size. This will avoid large (intermediate) coefficients
and should speed up the computation significantly.

e ComputingCSPs in directionally solved form corresponds to finding all solutions Ot
which is also a difficult problem. As a matter of fact, the problem of finding all solutions
of the CSPhas a worst-case time-complexity(d"), whered is the largest domain size.

It is not difficult to show that if the maximum domain sizedsind if ideal intersection is

used to compute the generating systems of the varieties of the constraints then the maxi-
mum degree of the polynomials in the generating systems of the bases wikhdevell.

This does not exclude the possibility that the bouad&®™) and O (d") coincide for

the algorithm presented in this section.

e We could use Proposition 3.32 to compute the ba3esn step 1 (a) and 1 (b). This
should make it easier to compute the generating systems of the ideals of the constraints
and (perhaps) the Grobner basis to be computed in Step 2.
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For example, le€’;, ,; = {(0,0),(1,0),(0,1) },letG, = {z,y },letG, = {z — 1,0},
letGs = {z,y — 1}, and let/ be the ideal of’(, ,,. Then

)N {z—1)+(z)N(y)+{y)N{y—1)

z(z—1))+(zy) + (y(y — 1))

r(z—1),zy,y(y —1)).

LetG = {z(z —1),zy,y(y — 1) }. G1, G5 andG3 are universal Grébner bases and so is
G. The structure of> is very similar to the structure af;, G, andG3. Unfortunately,

in general the construction does not always lead to such nice bases and it can lead to sets
which are not Grobner bases with respect to any term order.

Note that the construction is very similar to algorithms for the transformation of a formula
F1 in disjunctive normal form to a formula; which is equivalent taF; and is in con-
junctive normal form. For example, every membjer, w; ) of Cy, ,, corresponds to a
(maximal) conjunction irfF; of the form:

Vi N W,
and vice versa. For each member of the generating system of the form:
(@ —viy) (= v )y —ws) - (Y — wj,)
there is a (maximal) disjunction of the form:
Vi VeV VW V- VIV

in F, and vice versa.

The advantage of the construction is that it avoids the need for the algorithm for ideal
intersection as described in Section 3.4.5. Thus it eliminates the need to compute the lex-
icographical (read difficult) Grobner bases which are required for the variable elimination
part of that intersection algorithm.

4.6 Example Applications

This section presents two examples whesss are transformed to their equivalents in direction-
ally solved form using the technique described in the previous section.
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Example 4.5 (Traffic Lights). The following constraints model a set of German traffic lights
and are based didower, 199%.
C{Umpuviﬂ mod 4,Pi+1 mod 4 F { (7‘, Tagag>7 (Ty7r>yvr)> (g,g,?",r), (y,r, Ty>r) };
Croy ={m9,710y}:
C{pi} = {T7g}v

fori € {0,1,2,3}. The eight variables are given by, pi, p2, ps, vo, v1, v2, @andvs. The
variablesp; correspond to pedestrian lights. The remaining variables are vehicle lights. There
are four 4-ary constraintSy ,; o v1.p1 1 Ciorpivepe b1 Clovspavs.ps 11 Cluvs,ps.vo.p }» @Nd €ight unary
constraints corresponding to a domain of each of the variables. The macro-structur€8fthe

is depicted in Figure 4.1. Every variabtes represented by the circle containing The 4-ary

Vo b3

Po U3

U1 b2

b1 (%)

Figure 4.1: Macro-structure of original CSP.

constraintCy is represented by the square which is connected to the variablebyrstraight
lines. Assumeg = 0,7, = 1,y = 2, = 3. Computing the generating systems for the constraints
with the algorithm as described in Section 3.4.5 results in the following systems:

B{ Vi;Pi>Vit1 mod 4>Pit1 mod 4

= {0 moda = 6V 1 moas + 11071 od 4 — 6Vit1 mod 4
; Vi + Vitlmodd — 3
, Dit1 mod 4 — V311 mod 4 T 60211 moaa — 110541 mod 4

3 2
; Di + Vit1modd — 3vi+1 mod 4 + 2Ui+1 mod 4 — 6

}

B,y = {v§—6vf’+ 1102 — 6v; } ;
Bipy =1{p; —3pi },

fori € {0,1,2,3}.
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The unionByx of these generating systems consists of 12 binomials and 8 monomials. Let
< be the lexicographical term order given by < v, < v; < vg < p3 < p2 < p1 < po. The
reduced Grobner basisy of ( By ) with respect to< is given by:

{v§ — 603 + 11v2 — Gus

,U2+U3—3
; U1 — U3
,U0+U3—3

, 2p3 — v + 6v3 — 11ug
, 2po + V3 — 302 + 203 — 6
, 2p1 — U3 + 6v3 — 11u;
, 2po + V3 — 3v2 + 203 — 6

}.

The reduced Grébner basis has revealed a structure which was implicit in the oggiRral
The basis does not equéll }. By Hilbert's Weak Nullstellensatz (Theorem 3.7) tBSPis
satisfiable.

It is recalled that Proposition 3.22 ensures that the construction of the generating bases of
the constraints using ideal intersection results in generating systems of radical ideals. Propo-
sition 3.22 guarantees that the sum of zero-dimensional radical ideals is either inconsistent or
zero-dimensional and radical. It is because of the latter that the Counting Theorem (Theo-
rem 3.46) can be applied to count the number of common zeros of the members of the sum.
The theorem guarantees that the number of zeros of a zero-dimensional radical ideal is equal to
the number of reduced terms of its ideal, where the reduced terms are those monomials that are
not divisible by any of the leading terms of the reduced Grébner basis of that ideal. The reduced
terms of( Gx ) with respect to< are given by{ 1, v3, vZ,v3 }. There are four reduced terms and
Theorem 3.46 guarantees that there are exactly four solutions @sthe

Figure 4.2: Macro-structure of CSP in solved form.

The zeros of each polynomial in the basis correspond to one of the following constraints of the



CHAPTER 4. CSPS IN SOLVED FORM 58
CSPin directionally solved form with< the macro-structure of which is depicted in Figure 4.2:

C‘/{vs} :{g7ryay>r};

Cluswsy = 1(19): (y,ry ), (rysy), (9,7) 35
Closwsy =1(9:9), (rysmy), (9,9), (1, 7) }5
Clugwsy = 1(1,9): (y,my ), (ry, ), (9,7) }5
Clpgwsy = 1(9,9): (ryry ), (roy), (1) 15
Clppwsy = 1(1:9) (1), (1), (9,7) }s
Clonosy =1(9:9), (ryry), (ryy), (ry7) 35
Clpowsy = 1(1:9) (ryry), (1y), (g,7) }-

Example 4.6 (Five Queens Problem)The following constraints model a 5-queens problem, i.e.

the problem of positioning five queens on a five by five chessboard such that none of the queens
attacks another queen. It is assumed thatittrequeeny; is placed in the-th column of the

board.

Cray ={0,1,2,3,4}, forie{0,1,2,3,4};

Clonay = {(Ti,Tj> € {0,1,2,3,4}2:n-7ré7‘j/\(7’,»—i)27é (rj—j)2},
fori # j,andi,j € {0,1,2,3,4}.

The generating bases for the constraints are given by the equations:

B{Qz}:{ H(qz_.])}v fOI’ZE{O,].,Q,?),é‘:}

0<j<4

and

Bigar =14 [] (@—a0)* k), foro=i<j<d.
1<k<4
KAj—i

Note that this time the construction of the generating bases is slightly different from the previous
example. Strictly speaking, the generating bases of the bivariate ideals are too loose, i.e. they
have too many zeros (some of them are “outside” the board). The ideals generated by the univari-
ate polynomials overcome this because they will “remove” these superfluous zeros. Furthermore,
these univariate bases ensure that the generating system will be that of a radical ideal.

Let X = U?:o{%} and By the union of the generating bases andhe lexicographical
order wherey, < g3 < g2 < ¢1 < qo. The reduced Grobner bagis, of ( Bx ) with respect to
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< is given by:
{¢8 — 10g3 + 3543 — 5043 + 2444
, 645 — 533 + 30g3qF — 37q3qs — 30g3 — 10q;
+90q3 — 254¢2 + 210g, + 36
, 24¢o + 25¢3q; — 200¢3q; + 515¢3q7 — 460¢344
+ 72q3 — 50q; + 440¢3 — 1270¢2 + 1264q, — 240
, 24q1 — 25¢3q; + 200¢3q3 — 515g3q3 + 460¢3q4
— 72q3 + 50q; — 420q3 + 1150¢% — 1092q4 + 120
, 60 + 693 — 5q3 + 30q3 — 37qy — 30
}.
The basis shows that after having positiogg@ndg; at valid locations there is only one pos-
sibility to position the remaining three queens. This is demonstrated by the fact that each of the
last three polynomials in the basidiigear in the variable which is its leading term. The number
of reduced terms of the reduced Grobner basis{i x 1 x 1 x 1 = 10.2 Theorem 3.46 (Count-
ing Theorem) guarantees that there are exactly ten solutions iegheens problem. TheSP
in directionally solved form which is equivalent toX, D, C') is given by( X, D, C"), where

¢ = {C‘/{(M}’C~/{(I37CI4}’OQQ27QS,Q4}’CEQ1¢13,G4}’C~/{(I07Q37Q4} };
C£q4} = {0,1,2,3,4};

Closay = 1(2,0),(3,0),(3,1),(4,1),(0,2),
(4,2),(0,3),(1,3),(1,4),(2,4) };
Cloparay = 1(4,2,0),(1,3,0),(0,3,1),(2,4,1),(3,0,2),
(1,4,2),(2,0,3),(4,1,3),(3,1,4),(0,2,4) };
Cloanar = 1(1,2,0),(4,3,0),(2,3,1),(0,4,1),(1,0,2),
(3,4,2),(4,0,3),(2,1,3),(0,1,4),(3,2,4) };
Cloanar = 1(3,2,0),(2,3,0),(4,3,1),(3,4,1),(4,0,2),
(0,4,2),(1,0,3),(0,1,3),(2,1,4),(1,2,4) }.

Note that originally there were ten binary constraints, whereag8tin directionally solved
form contains one binary constraint and three ternary constraints.

4.7 Concluding Remarks

In this chapter, we have studied a new technique for the transformation of exters®rsaio
equivalentCSFs in directionally solved form with respect to a certain variable ordering. The
resultingCSPs correspond to reduced Grébner bases for lexicographical term orders.

If the CSPin directionally solved form is satisfiable, a backtrack-free search for the first
solution exists. Furthermore all solutions can be found without encountering dead-ends.

The reduced terms afet 1ty : (t1,t2) € {qi, 43,43, 91,1} X {g3,1} }.



CHAPTER 4. CSPS IN SOLVED FORM 60

Most of the time needed in the transformation process is spent on the computation of a Grob-
ner basis of a zero-dimensional ideal. The general problem of computing Grobner bases is very
difficult. Computing such bases for zero-dimensional ideals is much easier in practice. Sugges-
tions have been presented on how to improve the algorithm.



Chapter 5

The Geometry of Constraints

5.1 Introduction

This chapter presents tools to analyse and disect constraints. The tools are the building blocks for
a newgeneralised backtracking algorithmhich is a generalisation of the well known chrono-
logical backtracking algorithm. Generalised backtracking is sound and complete.

The motivation for the generalised backtracking algorithm is as follows. It has been observed
in the mathematical community that a solution strategy for systems of multivariate polynomial
equations where Grobner bases with respect to total degree orders are factorised and the induced
problems are solved is to be preferred to a strategy where lexicographical Grébner bases (elim-
ination ideals/strict “lexicographical” rules) dictate the order in which equations should be used
to decompose the problefBoegeet al, 1986; Czapor, 1989; Melenk, 1990; 1993; Grabe, 1994;
Pesch, 1996 The reasons are two-fold. Firstly, the Grébner bases with respect to total degree
orders are (normally) easier to compute. Secondly, the polynomials occurring in the total degree
bases (normally) have a lower degree thereby leading to factors of lower degree. Grabe further-
more observes that problems coming from real life often fulfill the condition of being factorisable
[Grabe, 1994 The strategy used by the chronological backtracking algorithm is similar to the
“lexicographical” approach mentioned before. The generalised backtracking algorithm on the
other hand is motivated by similar observations as the “total degree” approach. To be more spe-
cific, the generalised backtracking algorithm is not restricted to the use of unary constraints (the
domains of the variables) alone to decompose problems.

Both the chronological backtracking algorithm and the generalised backtracking algorithm
traverse search trees. The chronological backtracker decomposes problems at each internal node
of the search tree by considering a unary constraint (the domain of a variable). For each member
in the unary constraint it creates a sub-problem. The number of sub-problems that have to be
considered is equal to the cardinality of the unary constraint. In terms of tree traversals the unary
constraint determines the (local) number of branches the sub-trees of which the chronological
backtracker has to traverse. This number is calleddbal branching factor As already indi-
cated, the generalised backtracking algorithm carangé&ind of constraint to obtain a problem
decomposition. It will be demonstrated that this will never result in a higher local branching

61
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factor but may result in a lower local branching factor in return for a marginal increase in the
space complexity.

The chronological backtracking algorithm has received much attention from many researchers.
Variants of the algorithm range from a vanilla versii@olomb and Baumert, 19§5to for-
ward checkindHaralick and Elliott, 198Dand MAC [Sabin and Freuder, 19B4and to back-
jumping [Gaschnig, 19718 conflict directed backjumpinfProsser, 1993 and dynamic back-
tracking [Ginsberg and McAllester, 1994 For detailed treatments of and surveys of back-
tracking the reader may wish to conféfondrak and van Beek, 1995; 1997; Nadel, 1989;
Dechter and Frost, 1999 The reader may wish to consiifinsberg, 1993; Tsang, 190fr
an introductory treatment of backtracking.

It is a well established fact that in order to keep (backtrack) search efficient it is imperative
that the branching factors of the nodes near the root of the search tree be kept as small as possible.
The contribution of generalised backtracking is that it is the first attempt to keep the branching
factor of the search tree small by analysing the structuangkind of constraint and by using
an alternative (exhaustive) way to enumerate the members of the constraint.

The remainder of this chapter is as follows. Section 5.2 introduces the noticw/efs
andpartitions of constraints. This is followed by Section 5.3 which introduces the notion of a
linear constraint and shows how linear constraints can be used to sing8ifg. Arguments are
presented that this simplification corresponds to a “localised” breadth-first search. Special kinds
of partitions of constraints are discussed in Section 5.4. The generalised backtracking algorithm
and the experimental results are presented in Section 5.5. A summary is presented in Section 5.6.

5.2 Covers and Partitions of Constraints

This section presents methods to decomposeCGBRinto severalCSFs the solutions of which
are pairwise disjoint and the union of the solutions of which is equal to the solutions of the
original CSP It is shown that certain kinds of decompositions are essentially the same as the
decompositions that are (implicitly) computed by the chronological backtracking algorithm.
First, the notions of @overof a constraint, that of partition of a constraint, and that of a
maximal partitionof a constraint are presented. This is followed by a proposition which demon-
strates the applicability of these notions to the decompositiobS#s. Finally, an example is
presented where the proposition is applied to a maximal partition of a unary constraint to decom-
pose aCSP, thereby explaining how chronological backtracking works.
In the following,2° denotes th@ower sebf S, i.e. the set of all subsets 6f

Definition 5.1 (Cover). Let S be a set. A set C 2° is called acoverof S if S = U.c.c. The
set containing all covers df is denotedx (S), i.e. K(S) = { K € 2° : § = Ueenc }.

Example 5.2 (Cover).The set{ {0,1},{1,2} } isacoverof{ 0,1,2}.

Definition 5.3 (Partition). Let S be aset. Aset € K (S) is called goartition of S if (Vsy, so €
m)(s1Nsy =0 <= s; # s3). The set of all partitions of' is denoted1(S).

Partitions are covers whose members are pairwise disjoint.
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Example 5.4 (Partition). The set{ {0,1},{2} } is a partition of{ 0, 1,2 }.

Themaximal partitionof a setS isthese{ {s} : s € S }.
It is recalled that the variety of the intersection of two ideals is equal to the union of their va-
rieties (Theorem 3.26), i.e. ifand.J are ideals of some polynomial rikg.X | then the following
must hold:
VUInJ)y=V{I)UuV(J).
It is also recalled that the variety of the sum of two ideals and the intersection of their varieties
are the same (Theorem 3.28), i.e/iind J are ideals of some polynomial ring X] then the
following must hold:
VUI+J)=V{I)NnV(J).
Finally, it is recalled that there is a relationship between varieties and constraints. The relation-
ship is that a constrairits C £" is the variety of an ideal of[S].
LetC = (X, D,C") be anyCSP, let Cr be any member of’, and letx be any cover ot’r.
The following proposition states that on the one hand the solutiodsasfd on the other the
union of the solutions of the SPs which are created by replacidg in C' by the members of
are the same.

Proposition 5.5 (Covers of Constraints).Let X be a non-empty set of variables, let= k[ X],
and letD(x) C k, for all z € X. Furthermore, let( X, D,C') be anyCSP, letT C X, let
Cr e C,andletC’ = C\ {Cr}. If k € K(Cr) is a cover ofCr then the following holds:

V EC CER WwecC’

N (IR (CT>) =V (IR (Ucemc>>
=V (mc€n IR (C))
=JV(Ir(9). (5.1)

CER

(gm) (e )
ZV<1R<CT)>HV<ZIR<V>).

vVecC’

It is also true that:

Using Equation (5.1) this is tantamount to:

v (Z In <v>) — (JVe@)nV <Z In <v>)

vel CER Vec!

=UV<IR(c)+ > IR<V>>,

CEK vec’
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which completes the proof. O

Notice that partitions are covers. Therefore, Proposition 5.5 also applies to partitions and
maximal partitions.

Proposition 5.5 allows for the decomposition o€&Pinto a collection ofCSPs. The col-
lection represents theSPin the sense that the union of the solutions of the members of that
collection is equal to the solutions of thasP.

The following demonstrates how Proposition 5.5 can be used to explain how the chronologi-
cal backtracking algorithm works.

Example 5.6 (Chronological Backtracking).LetC = ( X, D, C') be theCSP, where

X={zy};
C={Ce},Ctyy, Clayy } 5
D(z)={1,2};
D(y)={1,2,3};
Clay ={1,2};
O{y} ={1,2,3};

Clagy = {(1,1),(1,2),(2,3) }.

The solution set ot is Cy,,;. To backtrack withr as the current variable corresponds to
the application of Proposition 5.5 to th@SP for the cover (maximal partition, reallyy =
{ Cley Clay } whereCy , = {1}andCy, , ={2}.

The application of Proposition 5.5 toallows for the decomposition of the constradiit,

into the two constraint§’ , andCY . The two constraints can be used to disseatto the
two CSRsC" andC”, where

C'= (X, D, { C~/{x}7 C{?J}? C{x,y} } );

C" = (X,D,{C{4y,Clyy, Clayy } ).
The solutions ot are given by{ (1,1), (1,2) } and the solutions at” are given by{ (2,3) }.
The union of the solutions af’ andC” is equal to the solution set @f. If the “standard”

lexicographical heuristics are used then a chronological depth-first backtracking algorithm will
first solveC’ and therC”.

5.3 Linear Constraints

This section will discuss how to use certain properties of constraints to simplify bGEPy.
In particular it will be shown that what will be calldihear constraints (many-to-one-relatiohs)
can be used to simplify binalgSPs. The simplifications consist of a transformation of a binary

1A suitable name for linear constraints could also have Beeational constraints had it not been for the fact
that there is a “name clash” for such constraints. For exanbgée Hentenrycket al, 1994 and[David, 199%
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CSPto a binaryCSPwhere a variable has been eliminated (modulo renaming). The sizes of the
domains in the resultingSPwill be less than or equal to the sizes of the domains in the original
CSP. The number of binary constraints in the result@§P will be less than the number of
binary constraints in the origin@SP It will be argued that such transformation can be regarded
as a “localised” breadth-first search of depth two.

The remainder of this section is as follows. First, definitions will be provided adégeeeof
a set of variables in a constraint and that dihaar constraint Next, examples will be provided
of the application of linear constraints to the simplificatior0gPs. Finally, a summary will be
presented.

Let £ = C. The degree of a variable of a polynomial and the total degree of a polynomial
are closely related to the number of zeros of that polynomial iRor example, the degree of a
variable in a polynomial is an upper bound of the maximal number of assignments to the variable
for which the polynomial will vanish given fixed assignments to the remaining variables in the
polynomial.

Example 5.7 (Polynomial Degree (1))Let P = z* — 3z + 2 = (x — 1)(x — 2). The degree of
x in P is2 andP has exactly zeros forz in P.

Example 5.8 (Polynomial Degree (2))Let P = z2 — y.

e The degree of in P is 2. If we substitute any value fromfor y in P then there are either
1 or 2 zeros ink for x in P.

e The degree of in P is 1. If we substitute any value fromafor z in P then there id zero
for y in P.

The ideal-variety correspondence allows us to translate polynomials to constraints and vice
versa. This suggests that constraints also have “degrees” and “total degrees.” The following is
an attempt to generalise these notions of degree and total degree to that of the degree of a set of
variables in a constraint. Notions similar to that of the degree of a constraint do not seem to have
appeared before in artificial intelligence. The number of substitutions of values for a variable in
a polynomial corresponds to a branching factor of a constraint in a search tree. As will be shown
later, the degree of a set of variables in a constraint relates these variables to the branching factor.
Constraints with low degrees correspond to low branching factors in search.

Definition 5.9 (Degree of Constraint).Let S and7T" be non-empty sets of variables such that
S C T. Furthermore, lel? = k[T, let Cr be a constraint whose cardinality is finite, and let
deg(+,-) be the function depicted in Figure 5.1. The numies(Cr, S) is called thedegreeof S
in Cr. The degree of = } in Cr will also be called thelegreeof = in Cr or thex-degreeof Cr.

both use functional constraints with a different meaning. Functional constraints in the confféahdfdentenryck

et al, 1994 are what will be calledbi-linear constraints here further on. They correspond to one-to-one relations.
Functional constraints in the context[@avid, 1995 correspond to the notion of what will be called linear binary
constraints in this work.
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functiondeg(Cr, S) :
vard, m, I, Js, Ps, Vs;
begin
if Cr = () then
return0;
else if|S| = 1 then begin
letT\ S={z1,....,2n };
I =1Ig (CT),
Js={(x1—v1,....,Tm — V) : (V1,...,0p) €L},
Vs={V{U+J):Jels}
d=max({|V|: V €Vs}),
returnd,
end
else begin
Ps ={7m €ll(Cr) : (Veen)(Iz € S)(deg(c,{z})=1)};
d=min({|r| : 7 € Ps});
returnd,
end,;
end;

Figure 5.1: Degree function.
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If |S| = 1 then the degree df in Cr is the maximum number of solutions for the variable in
S that are “allowed” byC'r given fixed assignments to the variable§in S.

A constraintCr is calledlinear in x € T if the degree oft in C7 is one. Cr is called
quadraticin = € T'if the degree ofr in Cr is two, and so on. A binary constraitt;, ,, is
calledbi-linear if it is linear in bothz andy. A constraintCr is calledsub-linear(in S C T) if
Cr = (. Finally, a constrain€'r will be calledlinear if it is linear in some variable ifd".

Example 5.10 (Degree)Consider the binary constrai@t , ,,; given by:

Ctayy = {(0,0),(0,1),(0,2),(0,3),(1,0),(2,0) }.

The constrainCy,. ,, is not linear inz. For example, there are three tuplesip, ,, whose
second members are equal. Therefore, the degreeinfC|, ,, is at least three. Similarly,
C{.y) is not linear iny either. It is left to the reader to verify that the degreeroh C, ,, is
three and that the degreepin Cy, ., is four.

Note thatd,, = deg(C(,4y,{ %,y }) > 1 becaus&’, ,, is non-empty and is neither linear
in 2 nor linear iny. However, it can be shown thdt, = 2. For example, consider the following
two constraints:

C*/{m,y} :{(071)7(072),(0,3)};
Clayy = 1(0,0),(1,0),(2,0)}.

Both Ciw} andCi’mvy} are linear. The former is linear inand the latter is linear ip. The set

T = {Céx,y}, Clon } is a partition ofC'¢, ;. It follows from the definition of the degree of

{z,y}inCy,,, thatd,, < |r| = 2. As observed beforel,, > 1. Clearly,d,, is two.

Linear constraints can be used to simplify bin@g#s. If an arc-consistent constraifif ;. ,
is linear then the variablesandy can beamalgamatednto a “super-variable” which represents
the values in the Cartesian product of the domains ahdy that are inC', ;. The cardinality
of the domain of the super-variable is equaltex(|D(z)|,|D(y)|) and the number of con-
straints in the resulting@ SPwill be less than the number of constraints of the origin8P. The
transformation will leave all constraints of the foria,, y or Cy, . intact, forw andz ¢ { z,y }.

Thus, linear binary constraints allow for the elimination of a variable without causing an
increase in the domain sizes of the variables or the number of constraints. The remainder of
this section provides concrete examples about the flavour of linear constraints and how to exploit
their properties.

Example 5.11 (Singleton Domains)During backtrack search it often occurs that the domain of
a future variable reduces to a singleton set. bt such variable.

If the problem is binary and if the problem is arc-consistent thean be removed. Should
there be solutions then the projections of these solutions onto the domainitboe the value
in its domains.

If C7 is a constraint which involvesand if the domain of is a singleton thed'r is linear or
sub-linear inc. C'r is linear or sub-linear in because any assignment to the variabléS\q « }
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which satisfies the projection 6fr onto7" \ { = } can be extended to at most one assignment to
the variables iff” such that this extended assignment satisfies If the projection ofCr onto
the domain of: is non-empty then the constraifi{- can be contracted to a constraintbi{ « }
without “losing” any solutions; the solutions fercan always be recovered.
Thereasonwhy the solutions can be recovered is tliais linear inz. Therefore, there is a
function from the variables ifi" \ { « } to . If C'r is binary, then the contraction 6f; entails
the creation of a unary constraint on the remaining variableysay? \ { x }. If the problem
is arc-consistent then the contraction(tf is the same a®(y) and it can be ignored. In binary
CSPs that are arc-consistent, variables whose domains are singletons can therefore be eliminated.

In the previous example it was argued that a variablehose domain is a singleton can
be removed from binary arc-consisteDisPs because there is a function from the variables in
T \ {z } toz and that this mapping could be used to recover the value @his isexactlythe
same reason as the one upon whithC (a backtracker which maintains arc-consistefgbin
and Freuder, 1994 relies, namely that after the assignment of a value to the current variable
and after arc-consistency processing the current variable can be removed from a problem if it
is arc-consistent because there is a function from the future variables to the current variable.
Some people may argue thatan be removed becauseatsly value has been “saved” and can
therefore be recovered. Other people may argue that after the assignmemytarc-consistent
constraint between and another variable has “become” universal and can therefore be removed.
However, the concept of being “dependent on” a function is more general because—as the
following example will demonstrate—it allows for the simultaneous recovesgwéral different
values ofr as opposed to only one.
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Figure 5.2: Micro-structure before amalga- Figure 5.3: Micro-structure after amalga-
mation. mation.

Example 5.12 (Amalgamation of Nodes (1))Consider the constraint satisfaction problém
whose micro-structure is depicted in Figure 5.2. All constraints are binary. The conétyain{
is not linear. The remaining constraifif . ,,, is bi-linear.

Consider the sub-problem consisting of the two variablemdy, their domains, and the
constraint’y, ,,. As it turns out the sub-problem has exactly four solutions. The nodesly
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can be transformed into a new nodevhose domain contains four valuesb, ¢ andd without
increasing the maximum domain size. The transformation is such that these four values represent
the four solutions of the sub-problem.

Figure 5.3 depicts the micro-structure of the sab8&Pwherez andy have been “amalga-
mated” into one fresh variable The valuea in the domain of: represents the tupler,y ) =
(1,2), bcorresponds tox,y ) = (2,3), c corresponds toz,y ) = (3,4 ), andd corresponds
to (z,y) = (4,1). The problem is satisfiable if and only if the original problem is satisfiable,
and its solutions are in one-to-one correspondence with the solutions of its original problem. The
structure of the new problem is simpler than that of the original problem.

Transformations, like the one from tllsSPwhose micro-structure is depicted in Figure 5.2 to
the CSPwhose micro-structure is depicted in Figure 5.3 may also be regarded as the elimination
of a variable which linearly depends on a linear constraint (modulo renaming).

For binaryCSPs the worst-case time-complexity for the detectioralbfinear constraints is
in O (ed?). This is exactly the time that is required to makegParc-consistent—an “overhead”
which is considered to be well spent by researchers in the constraint satisfaction area. It is not
difficult to see how to incorporate part of the work for the detection of linear constraints into
existing arc-consistency algorithms.

If the domain sizes are large then most binary constraints are not linear and this can be found
out without much overhead. The reason why this does not require much overhead is that it is
not difficult (on average) to detect that there are at least two tuples in a binary constraint whose
first members are equal and to find two tuples in a binary constraint whose second members are
equal. However, when domain sizes become small a relatively large proportion of all the possible
binary constraints are linear. To detect that a constraint is linear is relatively easy if the sizes of
the domains are small. As argued, every linear binary constraint allows for the cheap elimination
of a variable from the€SP.

An application of linear constraints which is different from search is to settings where humans
are aided by constraint based decision-support-systems. Humans are easily baffled by many vari-
ables and many constraints. On the other hand, they seem to understand linear constraints well.
They also seem to understand the kind of transformation which corresponds to the amalgamation
of nodes. The application of linear constraints to the automatic transformatiob%®e aCSP
whose structure is easier to understand and in one-to-one correspondence to the ©@8ginal
seems to be very appropriate in such settings.

The following example demonstrates that, in the presence of constraint propagation, to amal-
gamate two variables that are involved in a linear binary constraint does not only allow for the
elimination of variables but may sometimes allow for the elimination of values.

Example 5.13 (Amalgamation of Nodes (2))Consider theCSPwhose micro-structure is de-
picted in Figure 5.4. Th€SPconsists of four variables, x, y andz, their domains, and four
binary constraint§’y , .1, C... 3, Ciay), andCy, ;. TheCSPis arc-consistent.

The binary constraint§'y .}, (..}, Ci.,y}, andCy, .y which were mentioned before are
explicit. Besides these explicit constraints there are also implicit constraints. These constraints
are determined by projections, (natural) joins, and intersections of constraints. For example, there
is an implicit constraint’(, , ., betweenr, y, andz. C¢,,.y = {(2,1,1) }. The constraint
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Figure 5.4: Micro-structure before collaps- Figure 5.5: Micro-structure after collapsing
ing = andy. x andy.

betweenz, y, andz may also be considered as a constraint betweeandy on the one hand
andz on the other. This constraint is given 6% ,,).; = {((2,1),1)}. The members of
C{(«y),-} are in one-to-one correspondence to the solutions of the sub-problem involving the
variablesr, y, andz, their domains, and the constraiiits, , ;, C¢,. .1, andCy, ..

C{ayy is linear. Therefore, the nodasandy can be amalgamated into a nodavhose
domain contains one value for each of the tuples that are “allowed’ by, without increasing
the size of the domains. Renamifg,y ) tow, (1,2) toa, and(2,1) to b results in aCSPthe
solutions of which are in one-to-one correspondence with the solutions of the orififaln
particular,(w, z,u) = (1,1,b) <= (w,z,y,2)=(1,2,1,1).

The micro-structure of the resultingSPis depicted in Figure 5.5. Note that tlsPis not
arc-consistent. The valu@sn the domain of: anda in the domain ofu have lost support as a
“result” of the constrainCy (, .,y .y which was implicit between, y, andz. Itis straightforward
to make theCSParc-consistent again.

To conclude this section it should be observed that the amalgamation of two variaids
y corresponds to what may be regarded as a localised breadth-first search of depth two. To
see why this is true observe that the domain of the amalgamation of two variables contains the
representatives of the values in the constraint between the variables. This set is equal to the set
containing the allowed assignments of the nodes of the search tree at depth two which uses an
ordering wherer andy are the first variables. The advantage of amalgamation is that no decision
has to be made yet about which value to assign to which variable, it simplifies the problem,
and it allows for cheap constraint propagation. The advantage of not making a decision about
which variable has to become the next current variable is that to postpone this decision may avoid
assignments leading to traversals of sub-trees that are infeasibly large.
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5.4 Linear Partitions

The previous sections have demonstrated the usefulness of partitions of constraints and linear
constraints. In this section we shall study a special kind of partition chiledr partitions and
a function to compute such partitions. The function is non-trivial in the sense that the cardinality
of its result is “low.” We shall see that linear partitions and the transformation to amalgamate
nodes can be used to enumerate the nodes in the search tree of constraints more efficiently than
chronological backtracking.

In the following |etpr0jxij () be theprojection functiordefined as follows:

L ) vy, If1<7<m;
10],.. Vipy ooy Vg, = .
PO, b 1 otherwise
Definition 5.14 (Layer). Let S be a non-empty set of variables, lete S, and letC's be a
non-empty constraint. Furthermore, &t,; = { proj,(t) : t € Cs}. AsetS, C Cg is called
anz-layerof Cs if |S,| = |C,y| and{ proj,(t) : t € S, } = Ci,y.

Example 5.15 (Layer). Let C¢,,3; = {(0,0),(0,1),(1,2)}. There are twar-layers of
C{syy- They are given by (0,0),(1,2) }andby{ (0,1),(1,2) }. The onlyy-layer ofCy, ,;
is given byC/, ,, itself.

Layers of binary constraints—as the following lemma demonstrates—are linear.

Lemma 5.16 (Linearity of Layers of Binary Constraints). LetCy,,; be a non-empty binary
constraint, letz € { z,y } and letz’ = x +y — 2. If S, is az-layer of C, ,, thenS. is linear in

z.

Proof. If S, is not linear inz’ then there must be at least two tuples, sagndt, in S., such
thatproj, (t,) = proj, (t,). This cannot be true becaug® | = |{ proj.(¢) : ¢t € C(,,) }| and
{proj.(t) : t € S, } = {proj.(t) : t € Cayy }. O

Lemma 5.17 (Monotonicity). LetCy, 1 be a binary constraint, let € { z,y }, and letS, be a
z-layer of Cy, ;. Furthermore, letl,, = deg(Cy, 3, {w }), and letd,, = deg(Cy, 3 \ S:,w),

forw € { z,y }. Thenmin(d,,d,) < min(d,, d,).

Proof. Trivial. O
Definition 5.18 (Linear Partition). A linear partitionis a partition whose members are linear.

The following defines a function to transform a binary constraint to a linear partition of that
constraint.

Proposition 5.19 (Linear Partition of Binary Constraint). LetCy,,; be a non-empty finite
constraint. Furthermore, led, = deg(Cy.}, {2 }), and letd, = deg(Cy,,1,{y }). Finally,
let P,(-) be the function defined in Figure 5.6, thé{(Cy, ;) is a linear partition ofCy, .
Furthermore,| P, (C{,y3)| < min(d,, dy).
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function P,(C}) :
var B;, Ci—l—h Ri, Z,
begin
if C; = () then
return(;
else begin
if deg(Cy,{x}) > deg(C;,{y}) then
Z =2
else ifdeg(C;, { © }) < deg(C;, {y }) then
z =y,
else
z = any member fron{ z,y };
B; = anyz-layer of C;;
Ciy1 =i\ By
R; ={B; } UPF(Cit1);
returnk;;
end;
end;

Figure 5.6: Partition function
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Proof. Let C, = Cy,,,. To prove that the proposition is correct it has to be demonstrated that
P,(Cy) terminates, thab,(C}) is a partition ofC', that the members aP,(C,) are linear, and
that the cardinality of?(C) does not exceenhin(d,, d,,).

termination Assume thatP,(C;) does not terminate. By assumpti@th | is finite. It follows
from the non-termination of’(C;) and its termination criterion that; >  for i €
N\ {0}. This together with the definition d8; allows us to infer tha) C B, C C; must
hold. Therefore(;,; = C; \ B; C C; and it follows that the sequence

013023033"'
is infinite. This contradicts the premise th&} | is finite.

partition property LetC, = Cy,,y and letd = |F,(Cy)|. To prove that?(C,) is a partition
of Cy we must prove that’, = U.cp,c,)c and that(vVCys, Cr € P(Ch))(Cs # Cp <=
@ - CS N CT)
First note that?(C;) = UL, { B; }. Nextnote that;,, UB; = C;,fori =d,d—1, ...,1.
Clearly, P,(C) is a cover ofC;. To see why the members &f(C) are pairwise disjoint,
observe thaB; C C;y1 = C; \ B;,forl <i < j <d.

linearity property By Lemma 5.165; is linear, forl < < d.
cardinality property Use Lemma 5.17 and induction afin(d,, d,). O

We are almost ready to demonstrate the application of linear partitions. Before doing so we
need to define the notion ofgeneralised branching factor

Definition 5.20 (Generalised Branching Factor).Thegeneralised branching factaf a linear
partition of a constraint is given by the cardinality of that partition.

Note that maximal partitions of unary constraints are linear. Therefore, the notions of gener-
alised branching factor and that of the branching factor coincide for maximal partitions of unary
constraints.

The application of linear partitions will become apparent in the next example. Before we go
on to that example, it should be pointed out that the minimum of the degrees of the variables that
are involved in an arc-consistent binary constraint, cannot exceed the minimum of their domain
sizes. This is formulated as the following proposition.

Proposition 5.21. Let C{,,; be a non-empty constraint, lét = deg(C{,,},{2}), and let
D(z) = {proj.(t) : t € Cyayy },forz e {z,y}, then

min(dy, dy) < min(|D(z)], [D(y)])-

Proof. |D(y)| > d, and|D(z)| > d,. O
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In the previous section we have seen that backtracking uses linear partitions of unary con-
straints to enumerate the members of the domain of the current variable. We have also seen that
linear binary constraints can be used to amalgamate two variables. We have argued that this
may be viewed as variable elimination (modulo renaming). By combining linear constraints and
amalgamation, we can obtain lower (generalised) branching factors.

Example 5.22 (Generalised Backtracking) Consider the constraidt; , , , whose micro-struc-
ture is depicted at the top of Figure 5.7. The constraint is cubicand iny. The two constraints
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Figure 5.7: Linear partition.

whose micro-structures are depicted at the bottom of Figure 5.7 form the partitiofiCy, C, }
of C{ zy b where

Cl:{(171)7(273)7(374)7(474)7(574)};
62:{(172)a(173)a(475)}'

C, is linear iny, wherea<’; is linear inz. The partition was computed usirg(-) by always
selecting the lexicographically smallestayer to compute the sefs;.

Note that the generalised branching factorrofthe cardinality ofr) is 2. This is strictly
less than ther-degree and thg-degree of the original constraint. This demonstrates that the
inequality in Proposition 5.19 may be strict.

The in-order search trees for the chronological backtracking algorithm for the variable order-
ingsx < y andy < x are depicted in Figures 5.8 and 5.9. The subscripts of the nodes and leaves
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Figure 5.8: In-order search tree. Variable ordering y. Branching factor i$5. Number of
visited nodes i43.
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Figure 5.9: In-order search tree. Variable orderings x. Branching factor i$. Number of
visited nodes i43.
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((Lﬁ,y)€{(1,1),(2,3)(3,4),(4,4),(5,4)}1 (17‘y>e{(1>2>¢(173)7(4‘5)}7
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Figure 5.10: Generalised search tree. Generalised Branching FaetoNismber of Visited
Nodes isl0.



CHAPTER 5. THE GEOMETRY OF CONSTRAINTS 76

of the trees represent the visiting order. Both trees Hawasited nodes and have a branching
factor of5 at the root of the tree. The number of leaves of the tree is equal to the cardinality of
the constrainty, ;.

Thegeneralised search tremrresponding to the partitionis depicted in Figure 5.10. The
nodes and leaves of this tree are visited byeaeralised backtracking algorithmAt the root
of the tree there are two branches—one for each member &ach of the members of is
linear. As argued before, linear binary partitions of arc-consistent constraints correspond to the
domain of a variable. As also argued before, a linear arc-consistent binary constraint can be used
to eliminate a variable (modulo renaming) by amalgamating the variables that are involved.

1. The number of leaves of the generalised search tree is equal to the number of leaves of the
in-order search trees. There is one leaf for each member of the constraint.

2. The linearity ofr ensures that the maximum domain size does not increase.

3. The generalised branching factor at the root does not exceed the minimum domain size
(the branching factors of the in-order search treeg) andy and is usually less than it.

4. The linearity of the partitions ensures that the depth of the generalised search tree is the
same as that of the in-order search trees.

5. The number of visited nodes of the generalised backtracking tree is less than the number
of nodes of each of the chronological backtracking trees. This is a consequence of 1, 2,
and 3, and the fact that (for this example) the generalised branching factor is strictly less
than the minimum domain size.

The most important effect of the generalised backtracking approach is that it has decreased
the generalised branching factor.

As argued before, chronological backtracking uses linear partitions of unary constraints to
decompose problems. The best generalised branching factor that can be obtained by the chrono-
logical backtracking algorithm is equal to the minimum domain size of the variables in a problem.
The generalised branching factor of binary constraints is usually less than the minimum domain
size of the variables that are involved.

Generalised backtracking works because the degrees of constraints determine the generalised
branching factor. If the degree of a variablen a binary constraint ig, thenz can be eliminated
(modulo renaming) at the cost of a branching factad,0br less. We have already observed that
d, never exceeds the cardinality of the domaincadnd may be less than it. if, is less than
the domain size of then a smaller branching factor can be achieved than with the traditional
backtracking approach. Since the domain sizes do not increase and since the height of the search
tree remains the same this results in strictly fewer visited nodes.

Figures 5.7-5.10 suggest that every leaf in the tree (read the representatives of the members
of C(.,4}) can be visited. This is not true in general. There are at least two reasons. The first
reason is that in general there may be more variables in a problem and the variables which will be
the current variable at depth two from the root of the tree may be different. The second reason is
that branches may become dead-ends as a result of the use of constraint propagation techniques.
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5.5 Experimental Results

This section presents some experimental results obtained by the application of the generalised
backtracking algorithm to some examples from the literature. First we shall discuss some imple-
mentation issues. Next we shall describe the problems, present the results, and discuss improve-
ments. Finally, we shall discuss future work.

5.5.1 Implementation Issues

The algorithm which was used for the experiment described in this section was implemented in
Haskell. The following are the steps carried out by the algorithm.

e The algorithm maintains arc-consistency. Backtracking occurs as soon as an arc-inconsis-
tency occurs.

e The algorithm removes every variable which is not involved in any constraint.

e The algorithm uses a heuristic to select a binary consti@jnt,, whose generalised
branching factor is likely to be low. In the process of findifig, ,,, all universal con-
straints will be removed. The algorithm uses the domain sizes of the variables to get an
impression of an upper bound on the generalised branching fagtoy, is selected from
the constraints whose variables have the smallest domains. Note that a minimum domain
size heuristic would have selected the next current variable to be a variable whose domain
size was equal tmin(|D(z)|, | D(y)|)-

The algorithm will inspecty ., , to see if it is linear.

— If C{.y is linear then the algorithm will amalgamateandy. Should this result
in an inconsistency then backtracking occurs. Otherwise, the algorithm solves the
remaining problem.

— If Cy,,y) is not linear then the algorithm uses the functig(-) defined in Proposi-
tion 5.19 to compute a linear partitionof that constraint. For each of the members
C/ of 7 the algorithm replaceSy, ., by C amalgamate;s andy, and if this
d|d not result in an inconsistency, solves the remalnlng problem.

As with most other algorithms, heuristics were used to decide tie-breaks. These tie-break
deciding heuristics did not make use of special properties of the problem that were solved.

The implementation was not aimed at efficiency in the sense of reducing the total number of
consistency-checks. Instead, the aim was to reduce the generalised branching factors.

5.5.2 Some Results

This section describes the results of applications of the generalised backtracking algorithm to
two large problems known from the literature. The objective of the experiment was to determine
the generalised branching factors during the different stages of the problem and compare this
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with the minimum domain size of the variables at these stages. For a chronological backtrack-
ing algorithm which maintains arc-consistency the minimum domain size of the variables is a

lower bound on its generalised branching factor. The problems which were used are the Radio
Link Frequency Assignment ProblemBL(FAPs) #3 and #4CELAR, 1994. These problems

are originally optimisation problems. However, they have been used here as exemplification
problems.

Problem Variables Constraints
Total Number Universal Linear Partitioned
RFLAP #3 400 2760 80 199 173
RFLAP #4 680 3967 99 300 181

Table 5.1: Problem overview.

Some basic properties &LFAP #3 and #4 are listed in Table 5.1. The column “Variables”
lists the number of variables for the problems. The column “Total Number” in the “Constraints”
column lists the number of binary constraints of the problems. The column “Linear” in the
“Constraints” column lists the number of linear constraints that were detected during search. It
is recalled that such constraints were used for the elimination of a variable (modulo renaming).
The column “Partitioned” in the “Constraints” column lists the number of (non-linear) constraints
which were partitioned during search. Note that this number represents the number of decision
points which were encountered during search. For neither of the problems was backtracking
required.

In the following, letr; be thei-th linear partition (the-th decision point) which was com-
puted by the algorithm. Le&D; be the original branching factor at the stage in the backtracking
process whem; was computed. It is recalled th@t is the minimum domain size of all remain-
ing variables in the problem—the best branching factor which can be obtained by a chronolog-
ical backtracking algorithm which maintains arc-consistency. Finally-ldbe the generalised
branching factor ofr;.

Figure 5.11 depicts the original branching faatgrand the generalised branching facter
for RLFAP #3. The solid line depict§); as a function ofi. The dashed line depicts; as a
function of ofi. Figure 5.11 depicts the rati@; /O, of the generalised and original branching
factors as a function of

Figure 5.13 depicts the original and generalised branching factordifeaP #4. Figure 5.14
depicts the ratio of the generalised and original branching factoRL{BAP #4.

A first observation is that the generalised branching factor does not exceed the original
branching factor and can be considerably less than it (especialgLfBAP #3). The ratio be-
tween the generalised and the original branching factors can be as much as 0.4-0.5 even at nodes
where there are many branches. This may be an indication that a proper implementation could
also save consistency-checks. A second observation is that (especialyHaP #4) the ratio
between the original and the generalised branching factor is almost 1 at different times during
search. This may be an indication that the problems are relatively loose at those times.
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Figure 5.11: Branching factors for RLFA problem #3. Soli¢g): DashedG;.

0.8 —

0.6 —

0.4 —

0.2 —

0 T T T

0 50 100 150

Figure 5.12: Ratid~;/O; of branching factors for RLFA problem #3.
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5.5.3 Future Work

In this section we shall investigate possibilities for proper implementations of the generalised
backtracking algorithm.

After arc-consistency has been obtained, it is important to find a binary constraint with a low
generalised branching factor. To find such constraints may require many consistency-checks.
However, a lot of the work to detect such constraints can be combined with the work to maintain
arc-consistency. The main reason for this is that an upper bound of the generalised branching
factor of a constrainCy, ,; is min(d,, d,), whered, is the z-degree ofC{, ,, andd, is the
y-degree o’y ,y. In the following, letz be any member of z,y }, letz’ = +y — 2, and let
v be any member oD (z). Furthermore,

e Let Sf(v) be the values iD(z’) that are known to suppot
e LetS; (v) be the values itD(2’) that are known not to suppart

o Letu(v,z) = |D(2')| — |57 (v)], and letU(z) = max({ u(v,2) : v € D(z) }. ThenU(z)
is an upper bound for the-degree o’ ,»

o Leti(v,2) = |SS(v)|, and letL(z) = max({I(v,z) : v € D(z) }. ThenL(z) is a lower
bound for thez-degree o’y ;.

As part of their effort to make problems arc-consistent, arc-consistency algorithms can keep
track the consistency-checks they carried out. For each constfgipi these consistency-checks
can be used to get an idea about:théegreel, of C(, ,, and they-degreel, of Cy, ,, because
L(z) < d, < U(zr)andL(y) < d, < U(y). If B(-) is used to compute a linear partition of
C{4y) then the minimum branching factor 6f(Cy ) is at mostmin(d,, d).

5.6 Summary

In this chapter, technigues have been presented to use the geometry of constraints to study their
properties, to transforr@SPs, and to solve them. It has been shown that geometric properties of
constraints can be used to reason about and simpfis.

The notion of the degree of a set of variables in a constraint has been introduced. This has led
to the notion of a linear constraint and it has been shown how linear constraints can be used for the
simplification of CSPs by amalgamating the variables involved in a linear binary constraint. This
amalgamation operation corresponds to a variable elimination (modulo renaming). Arguments
have been presented that for bin@$Ps the average costs for the detection of linear constraints
is low if arc-consistency is maintained.

It has been shown that the essence of chronological backtracking is that it uses linear par-
titions of unary constraints (the domains of the variables) to decomp@®Panto a set of
CShs the solutions of which are disjoint and whose union is equal to the solutions of the orig-
inal CSP. The cardinality of a linear partition is called the generalised branching factor of that
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partition. The optimal generalised branching factor for a chronological backtracking algorithm
which maintains arc-consistency is equal to the minimum domain size.

A generalisation of the chronological backtracking algorithm has been presented. This algo-
rithm, called generalised backtracking, is not restricted to the use of linear partitions of unary
constraints to decompo%eSPs but can use any kind of constraint for this purpose. A function
P,(-) has been presented to compute linear partitions of binary constraints. The cardinalities of
these partitions are small. @, ,, is a constraint such that the size of the domain @k y is
equal to the minimum domain size then the generalised branching faciof@f, , ) is never
larger then the minimum domain size but may be smaller.

A few results have been presented of applications of a toy implementation of the generalised
backtracking algorithm. The results are promising in the sense that they demonstrated that sig-
nificant reductions of the generalised branching factor can be obtained. It may be possible that,
with proper adjustments, the algorithm may become an improvement on the standard backtrack-
ing algorithm in the sense that it will also save consistency-checks. Suggestions have been pre-
sented on how to properly implement the algorithm. However, future research has to demonstrate
whether generalised backtracking can be implemented efficiently and proper experiments have to
be set up to compare chronological and generalised backtracking. Of course, these experiments
should be complemented by a theoretical investigation.



Chapter 6
The AC-3, Arc-Consistency Algorithm

6.1 Introduction

Arc-consistency algorithms are widely used to reduce the search-spa&»{Constraint Sat-
isfaction Problems). Arc-consistency algorithms regsupport-checkgalso known as consis-
tency-checks in the constraint literature) to find out about the properti€sas. They use
arc-heuristicsanddomain-heuristic$o select their next support-check. Arc-heuristics operate at
arc-leveland select the constraint that will be used for the next check. Domain-heuristics operate
at domain-level Given a constraint, they decide which values will be used for the next check.
Certain kinds of arc-consistency algorithms use heuristics which are—in essence—a combina-
tion of arc-heuristics and domain-heuristics.

In this chapter we will present a domain-heuristic which uses the notiomlofible-support
checkto improve the average performance of arc-consistency algorithms. The improvement is
that, where possible, support-checks are used to find suppottgdealues, one in the domain
of each variable, which were not previously known to be supported. It is motivated by the insight
thatin order to minimise the number of support-checks it is necessary to maximise the number of
uncertainties which are resolved per che@ie used this idea to improveC-3 andDEE to obtain
a new general purpose arc-consistency algorithm calee,. We will present experimental
results of a comparison AEE, AC-3, AC-7, andAC-3,. Our experimental results seem to
indicate thatAC-3;, always performs better thalEE and usually performs better than batG-3
andAC-7 for the set of test-problems under consideration. Our average time-complexity results
to be presented in Chapter 7 support these results. Together, these results seem to suggest that the
double-support heuristic can be used to improve arc-consistency algorithms beyond the current
state-of-the-art.

It is well known from the literature that arc-heuristics can influence the performance of
arc-consistency algorithms. To the best of our knowledge, ours is the first domain-heuristic
to improve the performance of arc-consistency algorithms.

The rest of this chapter is organised as follows. In Section 6.2 we will briefly recall some of
the concepts from the constraint satisfaction literature that will be used in this chapter. We will
discuss related work in Section 6.3. In Section 6.4 we will present the notion of a double-support
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check. We will describ&\C-3; in Section 6.5. Our experimental results will be presented and
discussed in Section 6.6. Finally, in Section 6.7, we will present our conclusions and discuss
further research.

6.2 Constraint Satisfaction Theory

In this section we will briefly recall the notions from the constraint satisfaction literature that
will be used in this chapter. In Section 6.2.1 we will recall some basic constraint satisfaction
terminology. In Section 6.2.2 we will lay out the main concepts of arc-consistency.

6.2.1 Constraint Satisfaction

Remember that &SPis a triple ( X, D,C), whereX is a set containing the variables of the
CSPR D is a function which maps each of the variables of @&Pto its domain, and’ is a set
containing the constraints of tl@SP. We will denote the domain of variableby D(z). In this
chapter we will only considebinary CSPs, i.e. we will only consideCSPs where the arity of
the constraints is at most 2.

A binary constraintCy, ,, € D(x) x D(y) between two variables andy is a set of pairs.
The pairs in the constraint represent the only combinations of values the variables can take.
C{.y) allows forz to take the value andy to take the valuey if and only if (v, w) € Cy,43.
Likewise, aunary constraint’{ ., is a subset of the domain af A member of a constraint is
said tosatisfythe constraint.

A CSPis callednode-consisterif and only if, for each variable:, eitherC ., ¢ C or each
value in its domain satisfiegS; , ;. Without loss of generality we will only consider node-consis-
tentCSPs. Furthermore, we will assume that: € X)(D(z) # 0). A test of the formv € Cy 3
or (v,w) € Cy,,y is called asupport-checknormally referred to asonsistency-chedk the
constraint literature).

Associated with a binarg SPis its directed constraint graph with nodes corresponding to the
variables, and arcs corresponding to the constraints ic 8 For every unary constraidt; ,
an arc(x,r ) exists. For every binary constraiat, ,,, two directed arcgz,y ) and(y,z)
exist. These arcs correspond to the “directed” relatifng and R,,, where R,, = C{,
andR,, = {(w,v) : (v,w) € R;, }. The set containing all directed relations is called
More formally, R = UC 4y €C { R.,, Ry }. Two distinct variables: andy in a CSPare called
neighboursf Cy, ,, € C. A CSPis calledconnectedf its constraint graph is connected.

An algorithm is calledi-directionalif it exploits the general property of binary relations that
(v,w) € Ry, ifand only if (w,v) € R, foranyv € D(z), anyw € D(y) and anyR,, € R
[Bessiereet al,, 1995.

6.2.2 Arc-Consistency

Let = andy be variables, lev € D(z), and letw € D(y); theny = w supportsz = v if
(v,w) € Ryy. In additionz = v is said to besupportedby y if there is somev € D(y) such



CHAPTER 6. THE AC-35 ARC-CONSISTENCY ALGORITHM 85

thaty = w supportse = v.

Given the notion of support, a connect€&Pis calledarc-consistentf and only if every
value in the domain of every variable is supported by all the neighbours of that variable.

A CSPis calledinconsistentf it has no solutions. Arc-consistency algorithms repeatedly re-
move all unsupportable values from the domains of variables, or decideGigRia inconsistent
by finding that some variable has no supported values in its domain.

Arc-consistency algorithms require support-checks to find out about the properGssaf
They usearc-heuristicsanddomain-heuristicto select their next support-check. Arc-heuristics
operate atarc-leveland select the constraint that will be used for the next check. Domain-
heuristics operate atomain-level Given a constraint, they decide which values will be used
for the next check. Certain kinds of arc-consistency algorithms use heuristics which are—in
essence—a combination of arc-heuristics and domain-heuristics.

6.3 Related Work

In this section we will briefly discuss some related workgemeral purposerc-consistency
algorithms. Here, by general purpose algorithm, is meant an algorithm which can be applied to
any binaryCSP

One of the earliest algorithms A<-3 [Mackworth, 1977. It has a worst-case time-complex-
ity of O (ed®) and a space-complexity @ (e + nd) [Mackworth and Freuder, 1985; 199&\s
usualn denotes the number of variables in b8P, e denotes the number of binary-constraints,
andd denotes the maximum domain-size.

Gaschnig introduced a related algorithm call@8E [Gaschnig, 197]8 DEE differs from
AC-3 in that, in essence, wherea€-3 processes only one afa;, y ) at a time, DEE processes
both(z,y ) and(y, z) at the same time.

A bi-directional arc-consistency algorithm called-7 has been presented [Bessiéreet
al., 1995. AC-7 never repeats support-checks, hag &d) space-complexity, optimad (ed?)
worst-case time-complexity, and never performs worse #ass if AC-3 and AC-7 are both
implemented with the usual lexicographic heuristics.

It is known from the literature that arc-heuristics can influence the performance of arc-con-
sistency algorithm§Wallace and Freuder, 19R2To the best of our knowledge, no reports have
yet been presented that the proper use of domain-heuristics can improve the performance of
arc-consistency algorithms.

6.4 Double-Support Checks

In this section we will introduce the notion ofdouble-support checknd point out some of its
properties. Consider the 2-variallssPwhose micro-structure is depicted in Figure 6.1. For
this CSPwe need at least four checks to find support for the four different values in the domain
of y. These checks will also find us support for the valie®, and3 in the domain ofz.
Furthermore, we need at least four checks to decide that the ¥&lag to be removed from the
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domain ofz. Therefore, the total number of support-checks that we need to transforosthe
to its arc-consistent equivalent is eight or more. The minimum number of support-checks that
are required is eight.

If a heuristic of lexicographically ordering the data-structurea@3, DEE, andAC-7 is
assumed, theAC-7 would need 11 support-checks to make @®Parc-consistent. The checks
required byAC-7 are given by(1,1) € Ry, (2,1) € Ry, (2,2) € Ry, (3,1) € Ry,
(3,2) € Ry, (3,3) € Ry, (4,1) € Ry, (4,2) € Ry, (4,3) € Ry, (4,4) € Ry, and
finally, (4,1) € R,,. DEE would also need 11 support-checks to transform @8 into its
arc-consistent equivalent. FaiC-3 this number would be 17. One of the reasons w©¢3
needs more support-checks thaBE andAC-7 is becausé\C-3 does not exploit the fact that
relations are bi-directional. Bi-directionality is used b§E, because while it is constructing a
support forz, each value inD(y) which is found to support a value iB(z) is marked. It then
tries to determine which values iR (y) are supported by but will not try to find a support
for those values inD(y) which are marked because they are already known to be supported.
Bi-directionality is exploited byAC-7 because it never tests fotw,v) € R, if it already has
checked v,w ) € Cf,, ), and vice versa.

Figure 6.1: Micro-structure of 2-variable CSP.

But even for 2-variable SPs and the lexicographical heuristics mentioned befDEt: and
AC-7 do too much work. For example, aftaC-7 has established that= 1 supportst = 1, the
first thing it will do to find a support for: = 2 is to try to find it withy = 1. As shown further
on, it would be better to postpone the chdck 1) € R,,, because a support far = 2 may
be found elsewhere ib(y), thus allowing for the possibility afvo values to be added to those
values which are known to be supported—as opposed to only one. The basic idea presented in
this chapter is the insight that order to minimise the number of support-checks it is necessary
to maximise the number of uncertainties that are resolved per check

The objective of arc-consistency processing is to resolve some uncertainty; it has to be
known, for eachv € D(x) and for eachv € D(y), whether it is supported. Support-checks
are performed to resolve these uncertaintiessimgle-support check v, w) € Cy,,y, is one
in which, before the check is done, it is already known that eitha@rw are supported. Alou-
ble-support chegk v, w ) € Cy, 4}, is one in which there is still, before the check, uncertainty
about the support-status of bothandw. If a double-support check is successful, two uncer-
tainties are resolved. If a single-support check is successful, only one uncertainty is resolved. A
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good arc-consistency algorithm, therefore, would always choose to do a double-support check in
preference to a single-support check, because the former offers the potential higher payback.
At any stage in the process of making the 2-variabParc-consistent:

e Thereis asef,;” C D(z) whose values are all known to be supported,by
e Thereisases’ = D(z) \ S} whose values are unknown, as yet, to be supported by

The same holds if the roles farandy are exchanged. In order to establish support for a value
v} € S? it seems better to try to find a support among the valuﬁ;’iﬁrst. The advantage of
this is that for each € S the check v}, v]) € C{,, is a double-support check and it is just
as likely that any, € S; supportsy; as it is that any;” € S/ does. Only if no support can be
found among the elementsﬂj, should the elementg in S, be used for single-support checks
(vs, v ) € Cpayy. After it has been decided for each valueliiz) whether it is supported or
not, eitherS;” = () and the 2-variabl€ SPis inconsistent, of;" # () and theCSPis satisfiable. In

the latter case, the elements frdiix) which are supported by are given byS;". The elements

in D(y) which are supported hy are given by the union of,” with the set of those elements of
S, which further processing will show to be supported by sethes S .

If we apply the procedure as sketched befdcethe CSPwhose micro-structure is depicted
in Figure 6.1 we would save support-checks when compar@&kE®andAC-7. Instead of the
11 checks needed yC-7, we would only need the following eight checksl, 1) € Cy, 1,
(2,2) € Clayy (3,3) € Crayy (4,4) € Crayy, (4,1) € Clayy, (4,2) € Clayy, (4,3) €
C{syy, and finally,(1,4) € Cy,,3. Remember that as argued before eight is the absolute
minimum number of checks that are needed to make&thearc-consistent.

It is not difficult to find an example where our approach would lead to more support-checks
than required withPAC-7, DEE or AC-3. For a random 2-variabl€SP, however, the proposed
method is more likely to lead to fewer support-checks. Proof of this will presented in the fol-
lowing chapter. The crucial insight is thataximising the number of successful double-support
checks is a prerequisite to minimising the total number of support-cheétke experimental
results in Section 6.6 seem to support the claim that a heuristic which aims at maximising the

number of successful double-support checks is efficient.

6.5 The AC-3 Algorithm

Motivated by the observations in Section 6.4, we present a new arc-consistency algorithm called
AC-3,. The algorithm is depicted in Figure 6.2 and Figure 6.3. The style of presentation of
the algorithm was chosen to keep it consistent with the style normally found in the literature.
The input to theAC-3, algorithm consists of the directed constraint grapbf the CSP, the set

D of the domains of the variables in tl@&SPand the constraint§’ of the CSP. Its output is
either( wipeout, () ) if the CSPis arc-inconsistent drconsistent, D’ ) otherwise, wheré)’ is the
arc-consistent equivalent &f.

LAgain we assume lexicographical ordering.
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Q—{(r,y)eG :x#y}
D' « copy(D);
while Q # () do begin
select and remove arfyz, y ) from Q;
(S, S, S;) « partition(D'(x), D'(y), Cyzy1);
if S = 0 then begin
return( wipeout, () );
end,
if D'(z)\ S # 0 then begin
replaceD’(z) in D’ by S;F;
Q= QU{(za)el:24a24y)
end
if (y,z) € @ then begin
remove(y, z ) from Q;
Sy — S u{v, €8]+ Bup € SH((vayvy) € Cpayy) b
if D'(y) \ S, # 0 then begin
replaceD’(y) in D' by S;;
Q—QU{(zy)eG:z#x,2#y};
end
end
end
return( consistent, D’ );

Figure 6.2: The AC-3algorithm.
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As shown in Figure 6.AC-3 uses a function calledartition. This function is shown in
Figure 6.3. Its input consist of the domaif%x) and D(y) and the constraint’, . Its output
consists of a tuplé S, S, S ) such thatS; C D(y), S; = D(y) \ S, and in addition:

St = {v;z € D(z) : (v, € S;)((vx,vy) € Crayy) } A
S; C {Uy € D(y) : (v, € S7)((va,vy) € Crayy) }
These rules express the fact tisdt is the set of all values itV (x) which are supported bi(y),

that each of its members is supported by some valugads well and thab;” does not contain
values which are not supported 5y .

S’ — D(x);
S —0;
Sy? — D(y);
Sy 0;
while S’ # () do begin
select and remove any, from S7;
if Jv; € 7 such that v}, v, ) € Cf,, then begin
select and remove any sucb from S;;
S;r «— S; U { v; };
s spu{ef);
end
else ifJv,” € S such that( v}, v, ) € C(,,y then begin
St Stu {v; };

end
end
return( S, S;F, S7);

Figure 6.3: Thepartition algorithm.

For theAC-3, algorithm it is assumed that the inpOBPis already node-consistemC-3;
is a refinement of th&C-3 algorithm as described iMMackworth, 1977 andDEE as described
in [Gaschnig, 1978 The subscript in the name stands for bi-directional; perhapsfar dou-
ble-support would have been more appropriate. ComparedAg@itd the refinement is that when
arc(z,y ) is being processed and the reverse(acr ) is also in the queue, then support-checks
can be saved because only support for the elemer,ﬂ§ Iras to be found (as opposed to support
for all the elements i) (x) in the AC-3 algorithm). Compared witDEE the refinement consists
of the double-support heuristic.

AC-3, inherits all its properties lik® (ed®) worst-case time-complexity and@ (e + nd)
worst-case space-complexity froAC-3. The proof follows directly from the relationship be-
tweenAC-3, andAC-3. Note that the space-complexity A-3, is O (e + nd) as opposed to
O (ed) for AC-7. The space-complexity characteristica\df-3, are better becausgthe number
of constraints) is quadratic im (the number of variables).
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6.6 Experimental Results

In this Section we present experimental results to enable comparisons bet®e&nDEE,
AC-7, andAC-3,. In Section 6.6.1 we will describe the experiments and the implementations of
the algorithms. In Section 6.6.2 we will discuss the results. Throughout this segtiof4)

will denote the (average) number of support-checks performed by arc-consistency algérithm

6.6.1 Description of the Experiment

In order to compare the arc-consistency efficiency©f3, DEE, AC-7, andAC-3, we have gen-
erated 30,420 random connecte8Ps. For each combination of (density, average tightness) in
{(d/40,t/40) : t € {1,2,...,39},d€{1,2,...,39} }, we generated twenty random con-
nectedCSFks. Here, thalensityof a connected binar@ SPis defined to b& x (e —n+1)/(n* —

3n + 2), wheren > 2 is the number of variables in theSPande is the number of edges in

the constraint-grapfSabin and Freuder, 19P4Thetightnessof a constrainCy, ,, is defined

to bel — |Ci.y3|/(|D(2)| x |D(y)|). Theaverage tightnessf a binaryCSPis the average

of the tightnesses of the binary constrailsbin and Freuder, 19R4The number of variables

per CSPwas a random number from 15 to 25. The domain size of the variables was always
equal to the number of variables in the problem. The task of the arc-consistency algorithms con-
sisted of transforming eadbSPinto its arc-consistent equivalent or deciding that d¢&Pdid

not have an arc-inconsistent equivalent. Téscographical queudeuristic (se¢Wallace and
Freuder, 199Pfor a description) was used for adding elements to, and removing elements from,
queues/streams in all the algorithms.

The DEE version used for the experimentation here, is an arc-queue based version of the
one described ihGaschnig, 1978 This implementation allows for a good estimation of the
efficiency of the double-support heuristic sirBEE andAC-3, both process the same edges in
the same order. The two algorithms only differ in their domain heuristic, i.e. they only differ in
the way they establish support for the elements in the domains of the variables at both ends of an
edge.

6.6.2 Discussion of Results

In this section we will present the results of our experimentation described in the previous section.
We have depicted the average numbers of support-checksCf®; DEE, AC-7, andAC-3, for
the randonCSPs at each combination of density and tightness in Figures 6.4—6.7. The numbers
of support-checks for each algorithm averaged over each problem are presented in Table 6.1.
Figures 6.8-6.11 depict the difference graphs for the average number of support-checks
betweenAC-3 and DEE, betweenAC-3 and AC-3,, betweenDEE and AC-3,, and between
AC-7 and AC-3,. The jagged lines at the bottom of Figures 6.8, 6.9, and 6.11 are where
the difference between the number of support-checks equals zero. Figure 6.12 dlepicts
#cc(AC-3y) /#cc(DEE). Figure 6.13 depict$ — #cc(AC-3y) /#cc(AC-7).
Table 6.1 seems to suggest that OeE approach is a waste. Despite the fact theE uses
the property that constraints are bi-directional, it can not gain much frofCi3, for example,
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DEE AC-3 AC-3, AC-7
#cc 7311 7261 5077 5319

Table 6.1: Average number of support-checks.

does less work thabEE for certain problems because aft®€-3 has processed afc, y ) it

does not always immediately process the reversé are ) if it is in the queue, whereaBEE
always does. To postpone processingz ) can be good for two reasons. First, if the domain

of x gets narrowed several times, the effect of adding the are ) to the queue several times,
can be overcome by processifg, x ) only once. Second, establishing support§dsy using
values fromD(x) which will be removed fromD(x) later may waste support-checks. This may
be illustrated by the following two possible events. In the first and most extremeAcSe
would process another arc, sg@y, z ), and detect a wipe-out dP(x). Had the ard y, z ) been
processed beforer, z ) then any support-check spent on this arc would have been wasted. In a
less extreme cas(z) could have been narrowed by processing other ares Tthis may save
work when( y, z ) has to be processed because, in general, fewer support-checks have to be spent
on each of the values iP(y) when D(x) gets smaller. Both effects become more pronounced
when constraints become tighter. Only when constraints are loosb B#loutperformAcC-3.

tightness 0.975 0.025 tightness ’ 0.975 0.025

Figure 6.10:#cc(DEE) — #cc(AC-3,). Figure 6.11:#cc(AC-7) — #cc(AC-3y).

AC-3, is always better thaDEE. Figure 6.10 shows this—by the way, note that, those parts
of the surface of the graph in Figure 6.10 which appear to be in the horizontal #lane- 0
are, in fact, above this plane. This seems to suggest that our double-support heuristic is a good
one. It is interesting to see that the ratio between the number of support-checks saved by the
double-support heuristic and the total number of support-checks, is nearly constant for fixed
tightness (see Figure 6.12).

AC-3, is better tharhC-3 everywhere to the left of the phase transition regiv@-3 becomes
better in the phase transition region, and stays better from there onwards. The reasé@s svhy
becomes better thakC-3, as the average tightness increases are the same asGvBpecomes
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better tharDEE as average tightness increases.
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Nevertheless, it seems thaC-3, is a more efficient algorithm on average tha@-3. The
disadvantage of always processing two arcs (thEE effect”) is turned into an advantage by
adopting the double-support heuristic. Possibilities seem to exist to impi©ov&, and DEE.

One possibility is to force the algorithms to degenerata@s3 (i.e. never to process a double
arc) as soon as they know (or learn) they are processing tight constraints.

AC-3, requires fewer support-checks thag-7 in a larger area in the problem space (see
Figure 6.11 and Figure 6.13) but as tightness increase3 becomes better. In the low tight-
ness are@dC-3;, does better thaAC-7 because most of its support-checks will lead to a double
support. AC-7 accumulates knowledge about support-checks it has already carried out and never
repeats one. Therefore, it has to outperf@y@: 3, at some stage as tightness increases.

It may seem surprising that (in our settilg-3, seems to perform better on the test prob-
lems thanAC-7, despite the fact thadC-3, has a worse time-complexity. However, this phe-
nomenon actually also occurs elsewhere. For example, in the linear programming community
the exponential simplex algorithm is still preferred over existing polynomial algorithms because
it behaves better on averageCA (another arc-consistency algorithm) has a better (worst-case)
time complexity thamAC-3. This did not stop people from usirgC-3 because it was almost
always better thaacC-4 [Wallace, 1998

6.7 Conclusions and Recommendations

In this chapter we have presented the notion of a double-support check and a domain-heuristic to
maximise the number of successful double-support checks. We have used this domain-heuristic
to obtain a general purpose arc-consistency algorithm cali®a, which is a cross-breed be-
tweenDEE andAC-3. We have presented experimental results which seem to suggest that our
domain-heuristic can improve the average performance of b&th and AC-3. These results
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seem to be the first indication that domain-heuristics can improve the efficiency of arc-consis-
tency algorithms. Our results also seem to indicate that, for the problems under consideration,
AC-3, is more efficient in a large part of the tightness-density space than any existing arc-con-
sistency algorithm including.C-7 with its usual lexicographical heuristics. We have suggested
changes to improvacC-3, in the high tightness area. These changes would consist of letting the
algorithm degenerate #®C-3 as soon as it would find out that it is processing tight constraints.

It seems that a double-support heuristic can be used to impgyove as well. One of the
changes to the algorithm should consist of the addition of a dynamic value ordering for the values
in the domains of the variables. This ordering should partially depend on support-checks which
were previously carried out, and should also consist of a tie-break ordering. Future research will
have to learn what these proposed changes to these algorithms will mean in terms of average
performance.



Chapter 7

Average Time-Complexity for
Domain-Heuristics

7.1 Introduction

Arc-consistency algorithms are widely used to prune the search-sp@&Pef Arc-consistency
algorithms requirsupport-check&lso known as consistency-checks in the constraint literature)
to find out about the properties 6ISPs. They usarc-heuristicsanddomain-heuristicso select

their next support-check. Arc-heuristics operata@tieveland select the constraint that will

be used for the next check. Domain-heuristics operati®aiain-level Given a constraint, they
decide which values will be used for the next check. Certain kinds of arc-consistency algorithms
use heuristics which are—in essence—a combination of arc-heuristics and domain-heuristics.

We will investigate the effect of domain-heuristics by studying the average time-complexity
of two arc-consistency algorithms which use different domain-heuristics. We will assume that
there are only two variables. The first algorithm, calliduses a lexicographical heuristic. The
second algorithm, calle®, uses a heuristic based on the notion adauble-support check
Empirical evidence presented in the previous chapter suggests that the double-support heuristic
is efficient.

We will define the algorithm&£ andD and present a detailed case-study for the case where
the size of the domains of the variables is two. We will show that for the case-Btusligupe-
rior on average. Three reasons will be pointed out why arc-consistency algorithms should give
preference to double-support checks at domain-level.

We will carry out an exact average time-complexity analysis for the case where the domains
are not restricted to have a size of two. Our analysis will provide solid mathematical evidence
thatD is the better algorithm on average.

We will derive relatively simpleexactformulae for the average time-complexity of both al-
gorithms and derive simple expressions for their upper and lower bounds. To be more specific,
we will demonstrate thaf requires abowa + 2b — 2log,(a) — 0.665492 checks for sufficiently
large domain sizeg andb. We will also demonstrate that on averaBeequires a number of
support-checks which is less thamax(a, b) + 2 if a + b > 14. Our results demonstrate tHat
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is the superior algorithm. Finally, we will provide the result that on avefagequires strictly
fewer than two checks more than any optimal algorithaifb > 14. This is the first such result
ever to have been reported.

As part of our analysis we will compare the average time-complexity of the two algorithms
under consideration and discuss the consequences of our simplifications about the number of
variables in theCSP,

The relevance of this work is that the double-support heuristic can be incorporated into any
existing arc-consistency algorithm. Our optimality result is informative about the possibilities
and limitations of domain-heuristics.

The remainder of this chapter is organised as follows. In Section 7.2 we shall provide basic
definitions and review constraint satisfaction. A formal definition of the lexicographical and
double-support algorithms will be presented in Section 7.3. In that section we shall also carry out
our case-study for the case where the size of the domains is two. We shall identify three reasons
which, from an intuitive point of view, suggest that at domain-level arc-consistency algorithms
should give preference to double-support checks. In Section 7.4 we shall carry out our average
time-complexity analysis for the lexicographical algorithm. In Section 7.5 we shall do the same
for the double-support algorithm. We shall compare the results of our average time-complexity
analysis in Section 7.6. Our conclusions will be presented in Section 7.7.

7.2 Constraint Satisfaction

This section provides our basic definitions and reviews constraint satisfaction. Its organisation
is as follows. In Section 7.2.1 we shall provide our basic definitions. In Section 7.2.2 we shall
review the related literature. As we already indicated, it is our intention to study arc-consistency
algorithms for the case where there are only two variables ilC8¥e In Section 7.2.3 we shall
discuss the consequences of this simplification.

7.2.1 Basic Definitions

Remember that aonstraint satisfaction problerfor CSB is a tuple( X, D, C'), whereX is a
set containing the variables of ti@&sSP, D is a function which maps each of the variables to its
domain and( is a set containing the constraints of th8P.

In this chapter we will only consider constraints between two variables at a time. Let
(X,D,C) be aCSP, let « and 3 two variables inX, let D(«) = {1,...,a}, and letD(3) =
{1,...,b}. Aconstraint between andg restricts the values they are allowed to take simulta-
neously. For the purpose of our analysis we will represent constraints as matrices and we will
only consider constraints between two variables at a tim&/ |§ the constraint betweenand
(G thenM is ana by b zero-one matrix, i.e. a matrix witthrows andb columns whose entries are
either zero or one. The tuplg, j ) in the Cartesian product of the domains,oédndg is said to
satisfythe constrainf\/ if M;; = 1, wherel/,; is the j-th column of thei-th row of M. A value
i € D(«) is said to besupportedby j € D(3) if M;; = 1. Similarly, j € D(p) is said to be
supported by € D(«) if M;; = 1.
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Definition 7.1 (Arc-Consistency).Let ( X, D, C') be aCSP. The CSPis calledarc-consistent
if (Vo € X)(|D(z)| # 0) and for each constrairit/ € C' it holds that if M is betweerv and 3
then for everyi € D(«) there is & € D(5) which supports and vice versa.

If (X,D,C) is aCSPthen we will assume that it is such that = {«,5} andC =
{ M}, wherel} is the constraint betweemand. Furthermore we will assume that(a) =
{1,...,a} # 0andD(B) = {1,...,b} # (. In other words, we will only concern ourselves
with CSPs where there are two variables, where the domains are non-empty, where there is one
constraint, and where the constraint is between the two variables afSkeWe shall discuss
the consequences of our simplifications in Section 7.2.3.

We will denote the set of att by b zero-one matrices byl®®. We will call matrices, rows
of matrices and columns of matrices non-zero if they contain more than zero ones, and call them
zero otherwise. Finally, we will assume that unless explicitly stated otherwise all matrices are
by b matrices.

Definition 7.2 (Row-Support). Therow-supportof ana by b matrix M is the set

fie{l....a}|Fe{L...0NM; =1)}.
The row-support of a matrix is the set containing the indices of its non-zero rows.

Definition 7.3 (Column-Support). The column-supporof ana by b matrix M is the set

{7e{1,...,0}|(Fie{l,...;a})(M;=1)}.

The column-support of a matrix is the set containing the indices of its non-zero columns.

Let M be ana by b matrix. We will say that row supportscolumnj if M;; = 1. Similarly,
columnj is said to support rowif M;; = 1.

From now on we will also speak of treipportof a matrix. By this we will mean the tuple
(sr, Sc ), Wheres, is the row-support ansl. is the column-support of that matrix.

An arc-consistency algorithmemoves all the unsupported values from the domains of the
variables of aCSPuntil this is no longer possible. For the case where there are two variables,
arc-consistency algorithms compute the support of a matrixsupport-checks a test to find
the value of an entry of a matrix. We will writhj for the support-check to find the value of
M;;. An arc-consistency algorithm has to carry out a support-cblé;;‘ldo find out about the
value of M;;. The time-complexity of arc-consistency algorithms is expressed in the number of
support-checks they require to find the support of their arguments.

If we assume that support-checks are not duplicated then at éhasipport-checks are
needed by any arc-consistency algorithm. For a zely b matrix each of theseb checks
is required. The worst case time-complexity is therefore exadtlipr any arc-consistency al-
gorithm. In this chapter we are interested in the average time-complexity of arc-consistency
algorithms.

If A is an arc-consistency algorithm anflana by b matrix, then we shall writehecks 4 (M)
for the number of support-checks requiredbyo compute the support of/.
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Definition 7.4 (Average Time-Complexity). Let A be an arc-consistency algorithm. Téeer-
age time-complexityf .A overM is the functiomavg 4 : N x N — Q, where

avg 4(a,b) = Z checks 4 (M) /2.

MeMeab

Definition 7.5 (Repetitive Arc-Consistency Algorithm). Let .4 be an arc-consistency algo-
rithm, thenA is calledrepetitiveif it repeats support-checks andn-repetitiveotherwise.

A support-check)/; is said tosucceedf /;; = 1 and said tdfail otherwise. If a sup-
port-check succeeds it is callsdccessfubndunsuccessfutherwise.

Definition 7.6 (Trace). Let a andb be positive integers, le¥/ ana by b zero-one matrix, and let
A be an arc-consistency algorithm. Tineceof M with respect to4 is the sequence of the form

(ilajla Mi1j1 )a (7;27j27 Mizjz )7 ey (ibjl; Miljl )7 (71)

wherel = checks 4(M) and)M; ; is thek-th support-check carried out by, for 1 < k <. The
lengthof the trace in Equation (7.1) is defined/asts k-th membeis defined by( iy, ji, M, j, ),
forl1 <k <I.

An a by b matrix hasab entries. Therefore, the lengths of the traces of non-repetitive algo-
rithms are less than or equald®. An interesting property of traces of non-repetitive algorithms
is the one formulated as the following theorem.

Theorem 7.7 (Trace).Let.A be a non-repetitive arc-consistency algorithm,detndb be posi-
tive integers, let\/ be ana by b zero-one matrix, and letbe the trace of\/ with respect taA.
If [ is the length of then the number of matrices whose traceiis exactly2?°—.

Proof. Let thek-th member ot be (i, ji, M, ;. ), for 1 <k <. We are looking fot S|, where
S={MeM: Vke{l,... 01} (M =M_)}.
S contains exactl2®~" members. O

The theorem will turn out to be convenient later on because it will allow us to determine the
“savings” of traces of non-repetitive arc-consistency algorithms without too much effort.

7.2.2 Related Literature

Arc-consistency algorithms have been studied for quite some time. In 1977, Mackworth
pointed out reasons why problems that are not arc-consistent are more difficult to solve with
techniques based on backtracking and presented three arc-consistency algorithmasGzalled
AC-2, and AC-3 [Mackworth, 197F. AC-3 is the most efficient of the three and, in a joint
paper with Freuder, worst-case time-complexity results\for3 are presentefMackworth and
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Freuder, 198b The lower bound they present(ged?) and their upper bound © (ed?), where
e is the number of constraints adds the maximum domain-size. Both bounds are linear in the
number of constraints.

AC-3, as presented by Mackworth, is not an algorithm as such; itcdassof algorithms
which have certain data-structures in common and treat them similarly. The most prominent
data-structure used b&C-3 is a queuewhich initially contains each of the paifsy, 5) and
(8, «) for which there exists a constraint betweerand 5. The basic machinery oAC-3 is
such thatany tuple can be removed from the queue. For a “real” implementation this means
that certain heuristics determine the choice of the tuple that was removed from the queue. By
selecting a member from the queue, these heuristics determine the constraint that will be used
for the next support-checks. In this chapter, such heuristics will be caltedeuristics

If («, ) is the tuple that was removed from the queue then every value in the domain of
which is not supported by some value in the domai @ removed from the domain ef. If
values are removed from the domainwothen pairs of the forni~, « ) are added to the queue
for every constraint betweenanda in the CSP, except for the case whefe= ~. The algorithm
keeps on doing this until either the queue becomes empty in which caS&the arc-consistent
or one of the domains becomes empty in which case support-checks can be saved because the
CSPcannot be made arc-consistent.

Not only are there heuristics f&C-3 to remove members from the queue, but also there are
heuristics which, given a constraint, select the values in the domains of the variables that will be
used for the support-checks. Such heuristics we will@athain-heuristics

Empirical results from Wallace and Freuder clearly indicate that arc-heuristics influence
the average performance of arc-consistency algorithivadlace and Freuder, 19p2Wallace
presents empirical evidence that the average time require&lChg is better than the average
time required byAC-4 [Wallace, 1998 AC-4is an arc-consistency which has an optigaled?)
worst case time-complexifyMohr and Henderson, 1986

The major drawback oAC-3 is that it cannot remember the support-checks it has already
carried out and—as a consequence—repeats some of them. Bessiere, Freuder and Régin present
another class of arc-consistency algorithms calléd7 [Bessiéreet al, 1995. AC-7 is an
instance of theAC-INFERENCE schema, where support-checks are saved by making inference.

In the case ofAC-7 inference is made at domain-level, where it is exploited fhigt = M,
where-T denotes transposition. @7 has an optimal upper bound of (ed?) for its worst case
time-complexity and has been reported to behave well on average.

The most prominent data-structuresia- 7 are adeletion-streanand aseek-support-stream
The purpose of the deletion-stream is to propagate the consequences of the removal of a value
from the domain of one of the variables. The seek-support-stream contains tuples of the form
((a,i),3), wherea and 5 are variables and € D(«). Atuple((«,i),/3) in the seek-sup-
port-stream represents the fact that support for the vakaeD(«) has to be found with some
value in D(3). Heuristics to select members from the seek-support-stream have effects on the
number of support-checks that are required and the order in which they are carried out.

AC-7's heuristics for the selection of tuples from its seek-support-stream are a combination
of arc-heuristics and domain-heuristics. However, beca@s& uses inference, not every re-
moval of every tuple from the seek-support-stream will result in an actual support-check. Since
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a double-support heuristic is but a special example of a heuristic, the heuristics for a particular
implementation oAC-7 could be such that the domain-level component could (partially) depend
on a double-support heuristic.

In their paper, Bessiere, Freuder and Régin present empirical results tiatthapproach
is superior to theAC-3 approach. They present results of applicationseiC-3 andMAC-7
to real-world problems. Her®IAC-i is a backtracking algorithm which us@€-i to maintain
arc-consistency during seart®abin and Freuder, 19R4Jnfortunately, it is not reported which
members of the classes they use for their comparison, i.e. it is not reported which heuristics they
used forAC-3 andAC-7 and their experiments cannot be repeated to get the same results.

In the previous chapter we presented an empirical comparison be@eanand AC-3
which is a cross-breed between Mackwortis-3 and Gaschnig’'DEE [Gaschnig, 1978
At the domain-level AC-3 uses a double-support heuristic. AC+3as the same worst-case
time-complexity asAC-3. In the experimental setting of Chapter 6 it turned out that AQ+ds
more efficient tharAC-7 in certain parts of the tightness/density spectrum. The results are an
indication that it is possible to use domain-heuristics to improve the performance of arc-consis-
tency algorithms.

7.2.3 The General Problem

In this section we shall discuss the reasons for, and the consequences of, our decision to study
only two-variableCSPs. Also we will make some general comments about the presentation of
our algorithms further on in this chapter.

One problem with our choice is that we have eliminated the effects that arc-heuristics have
on arc-consistency algorithms. Wallace and Freuder showed that arc-heuristics have effects
on performancg¢Wallace and Freuder, 19R20ur study does not properly take the effects of
arc-heuristics into account. However, later in this section we will argue that a double-support
heuristic should be used at domain-level.

Another problem with our simplification is that we cannot properly extrapolate average re-
sults for two-variableCSPs to the case where arc-consistency algorithms are used as part of
MAC-algorithms. For example, in the case of a two-variab&P, on average about one out of
every two support-checks will succeed. This is not truéisC-search because most time is
spent at the leaves of the search-tree and most support-checks in that region will fail. A solution
would be to refine our analysis to the case where different ratios of support-checks succeed.

We justify our decision to study two-variab&SPs by two reasons. Our first reason is that at
the moment the general problem is too complicated. We have studied a simpler problem hoping
that it would provide insight to the successfulness of the the double-support heuristic from the
previous chapter.

Our second reason to justify our decision to study two-varigtges is that we argue that at
domain-level a double-support heuristic is a good choice and that it can be studied independent
from an arc-heuristic. We assume that support-checks are not repeated.

Our reasoning is as follows. To compute an arc-consist&itwe have to find out for each
value in the domain of each of the variables if it is supported. We can only decide if a value
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i € D(a) is inherently unsupportable if we find a constraint betweeand another variablg

and use checks farachof the values inD(3) that were not known to suppatrtin other words,

if 7 is inherently unsupportable thamydomain-heuristic is a good choice.:lis inherently sup-
portable then for each constraint betweeand 5 we should not only find a support as soon as
possible but also find a support with a valudif3) whose support-status was not yet known, i.e.

we should use double-support checks involvingfter all, if a double-support check succeeds it

will provide more information about which values are supported by the constraint. This informa-
tion can be used for the purpose of making inference and for the purpose of “guiding” heuristics.
In other words, regardless of the inherent supportability afdouble-support heuristic is a good
choice to complement any arc-heuristic. Observe that our reasoning was independent of the
choice of the arc-heuristic that was used. We can probably study the double-support heuristic by
studying it for the case where tl@&SPis a two-variableCSP.

7.3 Two Arc-Consistency Algorithms

In this section we shall introduce two arc-consistency algorithms and present a detailed case
study where we shall compare the average time-complexity of the two algorithms for the case
where the domain size of both variables is two. The two algorithms differ in their domain-heuris-
tic. The algorithms under consideration aréexicographical algorithmand adouble-support
algorithm The lexicographical algorithm will be callefl. The double-support algorithm will
be calledD. As part of our presentation, we shall point out three different reasons which, from
an intuitive point of view, suggest that arc-consistency algorithms should give preference to dou-
ble-support checks at domain-level. We shall see that for the problem under considération
outperformsL.

The remainder of this section is as follows. In Section 7.3.1 we shall défarel examine its
average time-complexity for two by two matrices. In Section 7.3.2 we shall dBfarel examine
its average time-complexity for two by two matrices. As part of the examination process we will
point out three reasons which suggest that arc-consistency algorithms should give preference to
double-support checks. Finally, in Section 7.3.3, we shall compare the two algorithms.

7.3.1 The Lexicographical Algorithm £

In this section we shall define tiexicographical arc-consistency algorithealled £ and discuss
its application to two by two matrices. We shall first defifi@nd then discuss the application.
We will not be concerned about the data-structures used in implementatighdmdtead, it is
our intention to present algorithms such that their essence becomes clear. In our presentation we
use an ALGOL-ish pseudo-language which comes witfoeall v €S do statements
od” iteration-construct. The semantics of the construct are that for eaeht' it assignss to
v and carries oustatements . The order in which the members Sfare assigned to is the
same as the lexicographical order on the membefs of
In the presentations of our algorithms we will distinguish between dereferencing a constraint
and dereferencing other matrices. This is important because the number of times we derefer-
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function£(M, a,b) :
/* initialisation */
row-support=;
column-support= §;
foralli € {1,...,a} do
forallj € {1,..., b} do
C; =unknown;
od;
od;
foralli € {1,...,a} do
[* try to establish support foi */
7 =0;
while (j < b) and(z ¢ row-suppor} do
/*find lexicographically smallest that supports */
j=i+1
Cij = M;j;
if (C’LJ = 1) then
row-support= row-supportJ { s };
column-support= column-support) { j };
fi;
od;
od,
forall j € {1,...,b} \ column-support do
[* try to establish support foj */
i =0;
while (¢ < a) and(j ¢ column-suppostdo
/* find lexicographically smallestthat supportg */
=1+ 1;
if (Ci; = unknown) then
if (]\/[ij = 1) then
column-support= column-support { j };
fi;
fi;
od;
od;
return( row-supportcolumn-suppory;
od;

Figure 7.1: The lexicographical algorithth

ence a constraint determines the time-complexity of the algorithms, whereas dereferencing other
matrices does not.

Definition 7.8 (Lexicographical Arc-Consistency Algorithm). Let « andb be positive integers,
and letM € M®. Thelexicographicalarc-consistency algorithm is the algorithfndefined in
Figure 7.1.

It is important to point out that we distinguish between support-checks and matrix look-ups.
Only the checks\/;; contribute to the total number of support-checks, whereas the looK-ips
do not.

L does not repeat support-check first tries to establish its row-support. It does this for
each row in the lexicographical order on the rows. When it seeks support farrtnes to find
the lexicographical smallest column which suppertafter £ has computed its row-support, it
tries to find support for those columns whose support-status is not yet known. It does this in the
lexicographical order on the columns. Whéitries to find support for a columy it tries to find
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it with the lexicographically smallest row that was not yet known to support

Example 7.9 ). Let M € M?3 be the matrix whose firstrow js0 1 1 ], whose second row
is[0 0 0 ],andwhose lastrowisl 1 0 ].Inorder to find the support a¥/ the following
support-checks are carried out lyin their order of appearancel/},, M{,, My,, M;,, M,
M3;,, M{,. The trace of\/ with respect taC is given by(1,1,0), (1,2,1), (2,1,0), (2,2,0),
(2,3,0),(3,1,1),(1,3,1).

—_

0(1]0 111

—_
o
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0f{1]{0|1][0]|0|{0[0]|[O]O|]|O]|O
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Figure 7.2: Traces of. Total number of support-checksli§ x 4 — 6 x 1 = 58.

Figure 7.2 is a graphical representation of all traces with respe€t tBach different path
from the root to a leaf corresponds to a different trace with respect tBach trace of length
[ is represented in the tree by some unique path that connects the root and somelleafivia
internal nodes. The root of the tree is an artifiéidh member of the traces. The nodes/leaves at
distanced from the root correspond to thieh members of the traces, for< [ < ab = 4.

Nodes in the tree are decision points. They represent the support-checks which are carried
out by L. A branch of a node that goes straight up represents the fact that a support-check, say
M,, was successful. A branch to the right of that same nod&presents the fact that the same
M;; was unsuccessful. The successful and unsuccessful support-checks are also represented at
node-level. The-th row of thej-th column of a node does not contain a number if the check
ij has not been carried out. Otherwise, it contains the numbegrlt is only by studying the
nodes that it can be found out which support-checks have been carried out so far.

Example 7.10 (Trace).The path in Figure 7.2 from the root of the tree to the second leaf from
the right represents the trate= (1,1,0),(1,2,0)(2,1,0),(2,2,1). The path from the root

to the leftmost leaf corresponds to the trage- (1,1,1),(2,1,1),(2,2,1). There is only one
two by two zero-one matrix whose trace is There are two two by two zero-one matrices whose
trace is given by,.
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Remember that we denote the number of rows:land the number of columns By It is
important to understand that there are = 2* = 16 different two by two zero-one matrices and
that the traces of different matrices with respecftoan be the same. To determine the average
time-complexity ofC we have to add the lengths of the traces of each of the matrices and divide
the result by2?®. Alternatively, we can compute the average number of support-checks if we
subtract fromab the sum of theaverage savingsf each the matrices, where the savings of a
matrix are given by:b — [ and its average savings are given(by — 1) /2%°, wherel is the length
of the trace of the matrix with respectfo Similarly, we define the average savings of a trace as
the sum of the average savings of all the matrices that have that trace.

It is interesting to notice that all traces Gfhave a length of at least three. Notice that,
is not capable to determine its support in fewer than three support-checks—not even if a matrix
does not contain any zero at all. Itis not difficult to see thatill always require at least+b— 1
support-checks.

L could only have terminated with two checks had both these checks been successful. If we
focus on the strategg uses for its second support-check for the case where its first support-check
was successful we shall find the reason why it cannot accomplish its task in fewer than three
checks. AfterZ has successfully carried out its first cheldk, it needs to learn onlwo things.

It needs to know iR is in the row-support and it needs to knowiis in the column-support. The
next check ofL is M.,. Unfortunately, this check can only be used to leamething. Regardless
of whether the check/;, succeeds or failsanother checkasto be carried out.

If we consider the case where the chédk, was carried out as the second support-check we
shall find a more efficient way of establishing the support. The chégkoffers the potential of
learning aboutwo new things. If the check is successful then it offers the knowledgetisan
the row-support and thatis in the column-support. Since this was all that had to be found out
the check), offers the potential of termination after two support-checks. What is more, one
out of every two such checks will succeed. Only if the ché¢k fails do more checks have to
be carried out. Had the chedk, been used as the second support-check, checks could have
been saved on average.

Remember that the same trace in the tree can correspond to different matrices. The Trace The-
orem states that ifis the length of a trace then there are exa2tly’' matrices which have the
same trace. The shortest tracesfofire of lengthl; = 3. L finds exactlys; = 3 traces
whose lengths arg. The remaining, traces all have lengthh = ab. Therefore,L saves
(51 % (ab — 1) x 2970 + g5 x (ab — lp) x 200712) /206 = (3 x (4 — 3) x 2473 +0)/2* =
3 x 1 x 21/2% = 3/8 support-checks on average. The strategy ttierefore requires an average
number of support-checks ab — % =4 — g = 3%. In the next section we shall see that better
strategies than that df exist.

7.3.2 The Double-Support AlgorithmD

In this section we shall introduce a second arc-consistency algorithm and analyse its average
time-complexity for the special case where the number of rewad the number of columns

b are both two. The algorithm will be calleRl. It uses a heuristic to select its support-checks
based on the notion ofdouble-support check
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The organisation of the remainder of this section is as follows. First, we shall formally define
the notion of a double-support check and two other related notions. Next, we shall Befine
and analyse it for the two by two problem under consideration. As part of our analysis, we
will identify three reasons which, from an intuitive point of view, suggest that arc-consistency
algorithms should prefer double-support checks to other checks at domain-level.

Definition 7.11 (Zero-Support Check). Let M be ana by b matrix. A support-checlej is
called azero-support check, just before the check was carried out, the row-support status of
and the column-support statusjofvere known.

A zero-support check is a support-check from which nothing new can be learned about the
support of a matrix. Good arc-consistency algorithms should therefore never carry out zero-sup-
port checks.

Definition 7.12 (Single-Support Check).Let M be ana by b matrix. A support—checlej IS
called asingle-support check, just before the check was carried out, the row-support status of
7 was known and the column-support statug @fas unknown, or vice versa.

A successful single-support cherj leads to new knowledge about one thing. Either it
leads to the knowledge thais in the row-support of\/ where this was not known before the
check was carried out, or it leads to the knowledge jhatin the column-support af/ where
this was not known before the check was carried out.

Definition 7.13 (Double-Support Check).Let M be ana by b matrix. A support-cheCMi’;
is called adouble-support chedi, just before the check was carried out, both the row-support
status of ofi and the column-support statusjofvere unknown.

A successful double-support check, stf;, leads to new knowledge about two things. It
leads to the knowledge thais in the row-support of\/ and thatj is in the column-support of
M where neither of these facts was known to be true just before the check was carried out.

Single-support checks, provided they are successful, lead to knowledge about one new thing
at the price of one support-check. Double-support checks, provided they are successful, lead to
knowledge about two new things at the price of one support-check. On average it is just as likely
that a double-support check will succeed as it is that a single-support check will succeed—in both
cases one out of two checks will succeed on average. The potential payoff of a double-support
check is twice as large that that of a single-support check. This is our first indication that at
domain-level arc-consistency algorithms should prefer double-support checks to single-support
checks.

Our second indication that arc-consistency algorithms should prefer double-support checks to
single-support checks is the insight that in order to minimise the total number of support-checks
it is a necessary condition to maximise the number of successful double-support checks.

Later in this section we will point out a third indication—more compelling than the previ-
ous two—that arc-consistency algorithms should prefer double-support checks to single-support
checks.
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Definition 7.14 (Double-Support Arc-Consistency Algorithm). Let « andb be positive inte-
gers andV/ € M. Thedouble-supportirc-consistency algorithm is the algoritiiPndefined in
Figure 7.3.

The strategy used b® is a bit more complicated than that af It will first try to use
double-support checks to find support for its rows in the lexicographical order on the rows. It
does this by finding for every row the lexicographically smallest column whose support-status is
not yet known. When there are no more double-support checkeft)]l use single-support
checks to find support for those rows whose support-status is not yet known and then find support
for those columns whose support status is still not yet known. When it seeks support for a
row/column, it tries to find it with the lexicographically smallest column/row that is not yet
known to support that row/column.

We have depicted the traces®fin Figure 7.4. It may not be immediately obvious, but the
strategy ofD is more efficient than that of. The reason for this is as follows. There are two
traces whose length is shorter than= 4. There is one such trace whose length is- 2 and
one such trace whose lengthijs= 3. The remainingss traces each have a lengthilgf= ab.

Using the Trace Theorem we can use these findings to determine the number of support-checks
that are saved on average. The average number of savirf@sud given by(s; x (ab — ;) X

2000 o x (ab —ly) X 2%07"2 4+ 55 x (ab —I3) x 2%0713) /29 = (2 x 22 + 1 x 21 +0)/2* = 5/8.

This saved /4 checks more on average thén

It is important to observe thdt has a length of only two and that it is the result of a se-
guence of two successful double-support checks. It is this trace which contributed the most to
the savings. As a matter of fact, this trace by itself saved more thanttdeavings ofL.

The strategy used b¥p to prefer double-support checks to single-support checks leads to
shorter traces. We can use the Trace Theorem to find that that the savings of a trace are of the
form (ab — 1)2%°~!, wherel is length of the trace. The double-support algorithm was able to
produce a trace that was smaller than any of those produced by the lexicographical algorithm.
To find this trace had a big impact on the total saving®ofhe reason wh{ was able to find
the short trace was because it was the result of a sequence of successful double-support checks
and its heuristic forces it to use as many double-support checks as it can. Traces which contain
many successful double-support checks contribute much to the total average savings. This is
our third and last indication that arc-consistency algorithms should prefer double-support checks
over single-support checks.

7.3.3 A First Comparison of £ and D

In this section we have compared the average time-complexity of the lexicographical algorithm
L and the double-support algoritinfor the case where the size of the domains is two. We have
found that the double-support algorithm was more efficient on average than the lexicographical
algorithm for the problem under consideration.

We have been able to identify three reasons which, from an intuitive point of view, suggest
that arc-consistency algorithms should prefer double-support checks to single-support checks.
The first reason is that a double-support check has a pay-off which is twice as much. If a dou-
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functionD(M, a,b) :
/* initialisation */
row-support= 0;
column-support= ;
foralli € {1,...,a} doforallj € {1,...,b} doC;; =unknown; od; od,;
forall: € {1,...,a} do
[* try to establish support for using double-support checks */
7=0;
while (5 < b) and(z ¢ row-suppor} do
/* try to find lexicographically smallest that supports */
j=i+1
if (j ¢ column-suppoitthen
Cij = Mj;
if (C” = 1) then
row-support= row-supportJ { s };
column-support= column-support) { j };
fi;
fi;
od;
od;
forall: € {1,...,a} \ row-support do
/* try to establish support foi using single-support checks */
7 =0;
while (5 < b) and(z ¢ row-supporj do
/* try to find lexicographically smallest that supports */

i=Jj+L
if (C;; = unknownr) then
Cij = Mij;

if (Cij = 1) then
row-support= row-supportJ { s };
fi;
fi;
od;
od;
forallj € {1,...,b} \ column-support do
[* try to establish support fof using single-support checks */
i =0;
while (¢ < a) and(j ¢ column-suppoitdo
/* try to find lexicographically smallestsupporting; */

=1+ 1;
if (C;; = unknowr) then
Cij = Mij;

if (Cl'j = 1) then
column-support= column-support { j };
fi;
fi;
od;
od;
return( row-supporfcolumn-suppory;
od;

Figure 7.3: The double-support algorittim

107
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111 (1{of|1]1}{(1]0 Of11{01]|0 0(0 00
1 110 0 0f1(1]0 111(]1]0||0|1]|0]O
1 1 0f1 0f1 0 00
110 0 1 0 1 0
1 1 0f1 00
1 0
1 0

______________

Figure 7.4: Traces dP. Total number of support-checksli§ x 4 —4 x 2 —2 x 1 = 54.

ble-support check is successful two things are learned in return for only one support-check, as
opposed to only one new thing for a successful single-support check. The second reason is that
it is a necessary condition to maximise the number of successful double-support checks in order
to minimise the total number of support-checks. The third and last reason is that the average
savings of a trace are of the forfub — 1)27!, wherel is the length of the trace. The shorter the
trace, the bigger the savings. Only traces that contain many successful double support-checks
can become very small and thus lead to big savings. To find many such traces requires a heuristic
which gives preference to double-support checks.

In the following sections we will provide solid mathematical evidence that the strategy used
by D is superior to that used by.

7.4 Average Time-Complexity ofL

In this section we shall investigate the average time-complexity of the lexicographical algorithm.
The organisation of this section is as follows. First, we shall define the notidef ahdright
support-checks. Next, we shall determine the average time-complexiiybgfcomputing the
average number of left and right support-checkg @nd use them to establish an exact formula
for the average time-complexity @f. Finally, we shall determine simple upper and lower bounds
for the average time-complexity .

L establishes its support in two phases. In its first phag#es to establish its row-support.
In its second phasé carries out the remaining work to find the column-support. In the following,
we will call the checks that are carried out in the first phasdefiesupport-checksThe checks
that are carried out in the second phase will be calledigie support-checks

The following lemma will be useful in our derivation of the average time-complexity for left
support-checks further on.
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Lemma 7.15. Letb be a positive integer. Then

b
D@t =2+4(b— 12"

c=1

Proof. Let f(b) = 320, ¢2¢, and letg(b) = 2 + (b — 1)2"*1. We have to prove that(b) = g(b)
for all positive integer$. We havef (1) = g(1) = 2. For every positivé we have:
fb+1)— f(b) = (b+1)2"*!
— b2b+1 + 2b+1
— b2b+2 . (b . 1)2b+1
=2+ ((b+1) — )20+ — (2 4 (b —1)2"™)
=g(b+1) —g(b).

Since f(1) = g(1) and f(b+ 1) — f(b) = g(b+ 1) — g(b) for everyb > 1 it follows that
f(b) = g(b) forall b > 0. O

The following relate$ and the sum of the left support-checks of a row of lerigth

Lemma 7.16 (Left Support-Checks for Single Rows)Letb be a positive integer, let/ € M
be al by b matrix, and letZ¥ be the number of support-checks requiredbto determine the
row-support ofAM/. Then

Z L —_ 2b+1 2.

MeM1b

Proof. If a row hasc — 1 leading zeros followed by a one therhecks have to be carried out.
There are2’— rows that have: — 1 leading zeros followed by a one. If a row is zero then
checks have to be carried out. Therefore, the number of left s.upport-chdr:l{rsEﬁ:1 c2b—¢,
The remainder of the proof consists of the simplification of this expression.

Z LY —b+202b ‘

MeMre

=b+b(2" = 1) = (D29

— b2b+1 o (b2b+l o 2b+71 + 2)
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The last equality holds becau$g’_, c2¢ = 3°_, ¢2¢, which is equal 2"+ — 2+ + 2 by
Lemma 7.15. The proof ends by observing that

b2b . (b2b+1 o 2b+1 4 2) — 2b+1 —9 m
The following relates:, b and the sum of the left support-checks of@aby b matrices.

Lemma 7.17 (Left Support-Checks byL). Leta and b be positive integers. Let}! be the
number of support-checks required Byto determine the row-support 8f. Then

> LY =a(2-2"")2

MeMeab

Proof. We can use Lemma 7.16 to count the number of checks that have to be spent on a row
at a fixed rowr in a matrix. This number is given /! — 2. For each sequence of length

that consists of ones and zeroes there are exaltly") different matrices where this sequence
occurs in the row at the same fixed positiorSince there are rows and since we can count the
checks spent on each of the different rows independently, the total number of checks spent on
rows of lengthb is the same as times the total number of checks spent on one row of lehgth
Therefore,

Z L% — (2b+1 . 2)a2b(a71)
MeMab
=a(2 - 2702,

which ends the proof. O
The following lemma provides a lower bound for any arc-consistency algorithm.

Lemma 7.18 (Lower Bound). Leta andb be positive integers, and lgt be any arc-consistency
algorithm then .
max(a, b)(2 — 2! ™Y < avg ,(a,b).

Proof. Assumeb < a. It is obvious thatwg 4(a,b) is at least as much as the average number

of support-checks that have to be carried out to find the row-support. The average number of
support-checks to find the row-support are at led8t— 2'-°) (the number of left support-
checks). The case far< b is analogous. O

The following relates:, b and the sum of the right support-checks ofaally b matrices.

Lemma 7.19 (Right Support-Checks byZ). Leta andb be positive integers, le/ € M be
an a by b matrix, and letR} be the number of support-checks requiredtbto determine the
remainder of the column-support &f after it has established the row-support/af. Then

b

> RY =22 (1—b)+2) (1-279%).

McMab c=2
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Proof. A support-check should only be carried out if there are no nowsr’ such thatV/,,, = 1
andM,.. = 0for1 < ¢ < c¢and no rows of the form” < r such that\/,.. = 1. Therefore,

b a
Z R% _ Z Z 2a(b—c)2(r—1)(c—1) (20 _ 2)(20 . 1)(1—1“

MeMeadb c=2 r=1

b a
_ Z 2a(bfc) (20 . 2)(20 _ 1)a71 Z 2(7"71)(071) (20 . 1)177"
c=2 r=1

b
_ Z 2a(b—c)+1(20—1 _ 1)(26 _ 1)a—1 (20—1/(20 . 1))7" (72)

—_

ﬁ
Il
=)

Note that in the inner summation of Equation (7.2) the valueisfalways greater than one.
Therefore,2¢71/(2¢ — 1) # 1 for all the ¢ that are under consideration. The inner summation
turns out to be the sum of a geometric series and we can simplify it as follows:

,_.

a—

(27120 = 1)) = (1 - 20D — 1) )1 — 27 (2 - 1))

= (2° =127 — 1)1 — 24D (2° — 1)7)).

ﬁ
Il
=)

This allows us to continue to simplify Equation (7.2) as follows:

b a—

Zza(b—c)+1(2c—1 _ 1)(20 _ 1)a—1 (26—1/(20 . 1))7-

c=2

—_

ﬁ
Il
o

b

= 320t 11— 20D (20 - 1))

c=2

— 9ab Z 1 _ 2—0 a 21—@)
b

= 292" (1 —b)+2) (1-279"),

c=2
which concludes the proof of Lemma 7.19. O

We are finally in a position where we can determine the average time complexity of

Theorem 7.20 (Average Time Complexity ofC). Leta andb be positive integers. The average
time complexity of overM® is given by the functioavg, : N x N — Q, where

b
avge(a,b) = a(2—2"7") + (102" +2) (1-279" (7.3)

c=2
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Proof. Divide the result of the addition of the left and right support-checks b 27°. O

We have verified Theorem 7.20 as follows. For each combinatienasfdb such thatl <
a,b < 5 we have computed” ;... checks. (M) by applyingZ to all a by b constraints and by
keeping track of the total number of support-checks that were required for each combination of
a andb. For each combination ef andb we have been able to verify that ,, .. checks, (M)
was exacthy} ", (LY + R} ) and thatwg - (a, b) was exactly ;e checks, (M) /2. Our
theoretical results fag by b constraints turned out to be exact, foK a,b < 5.

The following proposition will allow us to provide a neat bound §eg - (a, b). The proposi-
tion is adapted froniFlajolet and Sedgewick, 1996, Proposition 7.9, d. 59

Proposition 7.21 (Longestl-Run). LetL, = Y >° (1 — (1 — 27¢71)%), then

- vy 1 1 2iem _gier] 1
L,=1 -~ - r ie logs (a) 1y
o = 108) F o 5 P gy 2 (log@))e O\ Va

c€Z\{0}

Here, log,(-) is the base2 logarithm, log(-) is the natural logarithm;y ~ 0.577216 is Euler's
gamma constant, and(-) is the Gamma function. Thus,, is aboutlog,(a) + 0.332746 asa
becomes large.

The following follows immediately from Proposition 7.21.

Corollary 7.22. LetL) = 30 (1—(1-27°)%), thenL! = L,+1 asb becomes large. Therefore,
LY is aboutlog, (a) + 1.332746 asa andb become large.

We are finally in a position to provide a “nice” expressiondeg -(a, b).
Corollary 7.23. The average time-complexity 6fis about2a + 2b — 2log,(a) — 0.665492.

Proof. By Theorem 7.20 we have

b
avg(a,b) = a(2—2"") 4+ (1-0)2""+2> (1-279)"
c=2
b
= a2-2"7") -2 42y (1-279)"
c=0
b

= a2-2"")+b2-2"")+2-2> (1-(1-279%). (7.4)

c=0

Notice that ifb becomes large the sum reduces to the dijnirom Corollay 7.22. Therefore,
avg,(a, b) is abouta + 2b — 2logs(a) — 0.665492. O

The bound from Corollay 7.23 is interesting because @#ndb are of the same magnitude
and become large thdmwb,(a,b) is “almost” of the form2a + 2b — 2log,(a). This seems
to suggest that requires about two checks for each of the members in the domains of each
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of the variables. Given that on average every second entry of a matrix is a one, this seems to
suggest that” cannot use checks that are used to learn about its row-support to also learn about
its column-support and vice versa. Otherwise, the lower bound wbuld not have included
coefficients which are (approximatelg)for botha and b. It is as if £ carries out the checks
to find its row-support on the one hand and the checks to find its column-support on the other
almost completely independently from each other.

We can also explain the results we have obtained for the bound in Corollay 7.23 in the follow-
ing way. £ has to establish support for each ofdteows andh columns except for thecolumns
which were found to support a row whehwas establishing its row-support. Therefofere-
quires aboufa + 2(b — ) checks on average. To fiiddurns out to be easy. Assume that 2*
for some integek > 1. On average:/2 rows will be supported by the first column. From the
remaininga/2 rows on average/4 rows will be supported by the second column, ..., from the
remaining2 rows on averagé will find support with thelog,(a)-th column, i.el ~ log,(a). If
a does not have the special forzh then! will still be aboutlog,(a). This informal reasoning
demonstrates that on averagevill require abouta + 2b — 21og, (a) support-checks and this is
almost exactly what we found in Corollay 7.23.

7.5 Average Time-Complexity ofD

In this section we shall derive the average time-complexit oft will turn out that this is a bit
easier than the complexity analysis carried out in the previous section. As part of our analysis
we will demonstrate that i + b > 14 thenD requires fewer than two checks more than any
algorithm.

The organisation of this section is as follows. We shall first establish a recurrence equation
for the average time-complexity @ and from it derive an upper and a lower bound for its
average time-complexity.

Theorem 7.24 (Average Time Complexity ofD). The average time complexity Bf over M
is given byavgy, : N x N +— Q, whereavg,(a,0) = 0, avg,(0,0) = 0 and
avgp(a,b) = 2+ (b—2)2 7% + (a — 2)2 70 + 227970 (g — 1)21°%
+ 2 avgp(a —1,b) + (1 —27%) avgp(a — 1,0 — 1)

if a # 0 andb # 0.

Proof. Let totp(a,b) = ), cyas checksp(M). We shall first show how to obtaiavg, (-, -)
from totp(-, ). Next we shall show how to obtainty(-, ).
The functiontotp : N x N +— N is given bytotp(a,0) = 0, totp(0,b) = 0 and by

totp(a,b) = (2071 —2)2@~ Vb 4 oe=Dl=-D((p _92)2b 1 2) 4 (g — 1)(2° — 1)~ Db+
+ totp(a — 1,b) +2°71(2° — 1) totp(a — 1,5 — 1)

We have tried to apply a similar kind of analysis®oas we did toZ but all attempts failed. As will turn out
further on, the decision to use a recurrence equation has made the complexity analgsieémy.” Perhaps a
similar approach foL may result in “easy” proofs as well.
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if a > 0andb > 0. We can obtairavg, (s, t) from totp(s,t) using the fact thativg,(s,t) =
totp(s,t)/2%.

In the second and last part of the proof we have to demonstrate that the recurrence equation
for totp (-, -) is correct. The proof turns out to be easy when compared with the lexicographical
case.

Note thattotp(1,b) = b2° andtotp(a, 1) = a2¢ and for both cases, the recurrence equation
is satisfied. Assume that bothandb are greater than one, then:

totp(a,b)
— (20+1 = 2)2(@=Db 4 9@=DO-D () _ )28 4 2) 4 (a — 1)(20 — 1)20-Db+]
+totp(a —1,b) +2°71(2° — 1) totp(a — 1,0 — 1).
The following four points explain the purpose of each of the terms in the equation.

1. The term(2°+! — 2)2(e=Yb corresponds to the effort spent to find the smaljestich that
M,; = 1, where the effort is over all matrices M. Lemma 7.16 states that the such
effort spent on a row witlh columns is2’+! — 2. The total number of checks is therefore
given by(20+1 — 2)2(a=bb The factor2®=1® accounts for the fact that the numberadby
b matrices that have the same first rov@is1°.

2. If the first row was zero—there is one such case—then we have to comypyte — 1,b).

3. If the first row was non-zero—there ate— 1 such rows—we have to computet(a —
1,b—1). Let;j be the smallest positive integer such that = 1. The factor*~! accounts
for the column below\/;; that is not checked in the recursive case.

4. “After” the recursive application the following two independent tasks have to be carried
out.

(a) For every columry for which no one could be found in the recursive case the check
M, has to be carried out. The following is an illustration of this case.

0
The term2@=Dt=1((p — 2)2° + 2) counts the number of these checks.

(b) If the first row is non-zero and ij is the column for which it was found out that
M, ; = 1, then for every row for which no one could be found in the recursive case,
it has to be checked i#,; = 1. The following is an illustration of this case.
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The term(a—1)(2° —1)2(@=2%+1 counts these checks. The factar- 1) corresponds
to the number of rows whose index is greater than one and the f2ctorl is the
number of non-zero rows of length The factor2(¢=2"+1 js made up of the factor
2! which accounts fon,; and the factoe(¢—2)? which accounts for thé/,;, where
i # 1andi # r.

This ends the proof of Theorem 7.24. O

We have verified Theorem 7.24 as follows. For each combinatienasfdb such thatl <
a,b < 5we have computell’ . \..» checksp (M) by applyingD to all a by b constraints and by
keeping track of the total number of support-checks that were required for each combination of
a andb. For each combination ef andb we have been able to verify that ,, ;.. checksp (M)
was exactlytotp(a, b). Our theoretical results far by b constraints turned out to be exact, for
1<a,b<5.

Theorem 7.25 (Upper Bound for Average Time-Complexity ofD). Leta andb be positive
integers such that + b > 14. An upper bound for the average time-complexitPafver M is
given byupbp : N x N — Q, where

upbp(a,b) = 2max(a,b) +2 (7.5)
—(2max(a, b) 4+ min(a, b))2~ (@)
—(2min(a, b) + 3max(a, b))2~ max(@b),

Proof. We shall prove this by induction an+ b. LetP(i) be true if and only ifi > 14 and for
all positive integers: andb such that = a + b we haveavgy(a, b) < upbp(a,b).

We shall first verify the cases whetie= 1 or b = 1 and then tackle the more general case.
Letb =1, then

avgp(a,b) —upbp(a,b) = avgp(a,1) —upbp(a,1)
= a—(2a+2—-(2a+1)/2—(2+3a)27%)
= 217" 4+ 3a/27" - 3/2.

This means that it: becomes greater thanthenavgy(a,1) < upbp(a,1). The case where
a = 1lis similar.

We have verified that for all integeis< a and1 < b satisfying14 < a + b < 15 itis true
thatavg,(a,b) < upbp(a,b). In other wordsP(14) andP(15) are true.

Assume thatP(: — 2) andP(: — 1) are true for some integér> 16. We must prove that
P (i) must hold as well. To do this we must prove that for all positive integexsdb such that
i = a + b we haveavgp(a,b) < upbp(a,b). We already know that it. = 1 or b = 1 then
P(a + b) holds. Therefore, a proof for the case where 1 andb > 1 will suffice.

Let a, andb be any two integers such that- 1, b > 1 andi = a + b. There are two cases:
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eitherl <b <aorl <a <b. Assumel < b < a then
avgp(a, b) — upbp(a,b)
= 2427 (h—-2)2" "+ (a—2)2"" — (a —1)2"*
+2 " avgy(a — 1,b0) + (1 — 27 %) avgp(a — 1,6 — 1) — upbp(a, b)
< 24270 L (h—2)2 4 (0 —2)20 — (a —1)27%
+2 % upbp(a — 1,b) + (1 — 27" upbp(a — 1,b — 1) — upbp(a, b)
= (6—3a)27"+ (6 —3b)27" — (6 — 3b)27*".
Sinceb > 2 it must hold that(6 — 3b)27° < (6 — 3b)272*. This allows us to continue our
simplification as follows:
(6 —3a)27% 4 (6 — 3b)27" — (6 — 3b)27%
< (6—3a)27+ (6 —3b)27% — (6 — 3b)2™ %
= (6—3a)27¢
< 0,
where the last inequality follows from the fact that- 2.

Assume thal < a < b. We can use the same technique as for the case wheré < a to
derive the following:

avgp(a,b) —upbp(a,b)
< 24270 L (b =224 (0 —2)2 — (a —1)27%
+2 2 upbp(a —1,b) + (1 — 27" upbp(a — 1,b — 1) — upbp(a, b)
(6 —3a)27% + (4 — 3b)27° + (3b— 6)27%
< (6 —3a)27"4 (6 —3b)27" + (3b — 6)27%
< 0.

We have shown that for any integep 16 if P(i — 2) andP(i — 1) hold thenavg,(a, b) <
upbp(a,b). In other words, for any integer> 16 it is true thatP(i — 2) A P(i — 1) implies
P(i). We have verified that botR(14) andP(15) hold. Together this demonstrates t#{t) is
true for every integer > 14, which completes our proof. O

An important result that follows from Theorem 7.25 is that we can provelhatefficient.
Theorem 7.26 (Efficiency).Let .4 be any arc-consistency algorithm, and det- b > 14, then
avgp(a,b) — avg 4(a,b) < 2 — min(a, )2~ ™™@Y — (2min(a, b) + 3max(a, b))2~ @),

Proof. If avgy(a,b) < avg 4(a, b) then the theorem is obviously true.akfg 4(a, b) < avgp(a, )
then it follows from Lemma 7.18 that

max(a, b)(2 — 2~ min(@b))
avg 4(a, b)

avgp(a,b)
upr a, b)a

INIAIA
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whereupb,, is the upper bound provided by Theorem 7.25. It then follows that

avgp(a,b) — avg 4(a, b)
< upbp(a,b) —avg4(a,b)
= 2—min(a,b)2” ™" — (2min(a, b) + 3max(a, b))2~ >V,

which completes the proof. O

In other words, for every integer> 14, for every positive integerg andb satisfyingi =
a+b, and for every arc-consistency algorithdrit is true thatwg, (a, b) —avg 4(a, b) < 2. Note
that if A is more efficient tham® thenavg 4 (a, b)/ avgy(a, b) goes to one ag+ b goes to infinity.

7.6 Comparison of£ and D

In this section we shall compare the average number of support-checks requitedra/D.
The comparison will consist of a theoretical evaluation of the average time-complexitard
D and of a comparison of the average number of support-checks for some special cases.
The remainder of this section is organised as follows. In Section 7.6.1 we shall compare the
results obtained from the average time-complexity analysis ahdD from a theoretical point
of view. In Section 7.6.2 we shall compare the results of the average time requizdryD
for the problem classad™”, for 1 < n < 20.

7.6.1 A Theoretical Comparison ofL and D

In this section we shall compare the results obtained in Section 7.4 and Section 7.5 from a
theoretical point of view.

We already observed on Page 104 that the minimum number of support-checks required by
Lisa+ b— 1. In Section 7.5 we have derived an upper bound bélenax(a, b) + 2 for the
average number of support-checks requiredhyrovided thats + b > 14. If a + b > 14 and
a = b then then the minimum number of support-checks required lsyalmost the same as the
average number of support-checks require®by

Our next observation sharpens the previous observation. It follows almost immediately from
our average time-complexity analysis. It is the observationZha a better algorithm thad
because its upper bound is lower than the bound that we derivédusing Corollay 7.23. When
a andb get large and are of the same magnitude then the difference is zbouwta, b) which is
quite substantial.

We remarked that it was asAf carried out the checks to find its row-support on the one hand
and the checks to find its column-support on the other completely independently of each other.

Our most important result is the observation that-#b > 14 and if A is any arc-consistency
algorithm themwvgy, (a, b) — avg 4(a,b) < 2. To the best of our knowledge, this is the first such
result that has been obtained in the constraint literature.
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7.6.2 A Comparison for Some Special Cases

In this section we shall compare the average time requirefl &ydD for the first twenty cases
where the number of rows and the number of columns are the same.

n avg, avgp ratio n avg, avgp ratio
1 1.000 1.000 1.000 | 11 36.276 23.678 1.532
2 3.625 3.375 1.074 | 12 40.040 25.688 1.559
3 6934 6.043 1.147 | 13 43.821 27.694 1.582
4 10475 8.623 1.215 | 14 47.616 29.697 1.603
5 14.093 11.037 1.277 | 15 51.425 31.699 1.622
6 17.740 13.306 1.333 | 16 55.245 33.699 1.639
7
8
9
0

21.408 15472 1.384 |17 59.075 35.700 1.655
25.095 17.571 1.428 |18 62915 37.700 1.668
28.802 19.628 1.467 |19 66.763 39.700 1.682
32.529 21.660 1.502 |20 70.619 41.700 1.693

1

Table 7.1: Comparison aefvg - (n,n) andavgy(n,n) forn e {1,...,20}.

Table 7.1 compares the average time-complexity ahdD for each of the problem-classes
M"™*, wherel < n < 20. The columns: correspond to the clasd"”. The columnswg, list
the average number of support-checks required byhe columnsivg,, list the average number
of support-checks required ly. The columns ratio correspond to the ratio betwees). and
avgp. The data in Table 7.1 have been obtained with the use of Theorem 7.20 and Theorem 7.24.

It is important to state that the computations haw¢been carried out using floating-point
numbers but with arbitrary-precision integers. This is necessary to avoid the loss of precision due
to the enormous differences in the ratios between the absolute values of the numbers occurring
in the formulae for the average number of support-checks requirgdamndD.

The same data as presented in Table 7.1 are also presented in the form of a graph in Fig-
ure 7.5. The horizontal axis represents the size of the problem classes. A nuotbéris axis
corresponds to the class ofoy n» matrices. The vertical axis represents the average number of
support-checks required by both algorithms. The solid line in the graph represents the average
number of support-checks spent Byn, n). The dashed line in the graph represents the average
number of support-checks spentByn, n).

The figure clearly demonstrates what was stated before as Theorem 7.24, namety that
is almost linear in the size of the problems. It furthermore demonstrates that already for small
problem size® becomes significantly better th#@hand remains so.

In Figure 7.6 we have depicted the graphiph,,(n,n) — avgp(n,n) forn € {1,...,20}.

The position where the graph becomes positive is whetre 7, i.e. upby(a,b) — avgp(a,b)
becomes positive when+ b = 14 which conforms with our analysis in the previous section. As
the size of the problem increases the upper bound seems to remair 23@liove the average.
This seems to suggest that it is still possible to improve upon the upper bound.
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Figure 7.5:avg,(n,n) andavgy(n,n) forn € {1,...,20}.
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Figure 7.6:upbpy(n,n) — avgp(n,n) forn € {1,...,20 }.
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7.7 Conclusions and Recommendations

In this work we have studied two domain-heuristics for arc-consistency algorithms for the special
case where there are two variables. We have defined two arc-consistency algorithms which differ
only in the domain-heuristic they use. The first algorithm, calledses a lexicographical heuris-

tic. The second algorithm, calleld, uses a heuristic which gives preference to double-support
checks. We have presented a detailed case-study of the algoritlamdD for the case where

the size of the domains of the variables is two. Finally, we have carried out a careful average
time-complexity analysis fof andD.

We have defined the notion oti@ceand have demonstrated the usefulness of this notion. In
particular we have shown that the average savings of a tracelarel )2/, wherel is the length
of the trace and andb are the sizes of the domains of the variables.

As part of our detailed case-study we have presented three good reasons why arc-consistency
algorithms should prefer double-support checks to other checks. The first reason is that a dou-
ble-support check has a higher pay-off. If a double-support check is successful two things are
learned in return for only one support-check as opposed to only one new thing for a successful
single-support check. The second reason is that it is a necessary condition to maximise the num-
ber of successful double-support checks in order to minimise the total number of support-checks.
The third and last reason is that the savings of a trace are of the(forml)22°~!, wherel is the
length of the trace.

Our average time-complexity analysis has provided the bound of &hau2b — 2 log,(a) —
0.665492 checks forvg . (a, b) for sufficiently largex andb and an upper bound @fimax(a, b) +
2 — (2max(a, b) + min(a, b))2~ ™" — (2min(a,b) + 3max(a, b))2~ ™ for avg,(a,b),
fora + b > 14.

Two results follow immediately from the lower bound f6rand the upper bound f@. Our
first resultis that it clearly shows thatis the better algorithm of the two. Our second resultis the
result that ifA is any arc-consistency algorithm and.#b > 14 thenavgy(a, b) —avg 4(a, b) <
2. We have proved thatmax(a, b)(1 — 2~ ™) js a lower bound for any arc-consistency
algorithm. Together with our second result this allowed us to demonstrat® tisdbptimal” in
the sense that it is very close to that lower bound.

The work that was started here should be continued in the form of a refinement of our analysis
for the case where only eveny-th out of everyn-th support-check succeeds. This will provide an
indication of the usefulness of the two heuristics under consideration when they are used as part
of aMAC-algorithm. Furthermore, we think that it should be worthwhile to tackle the more com-
plicated problem of analysing the case where the constraints are not required to contain only two
variables. Finally, we think that it should be interesting to implement an arc-consistency algo-
rithm which does not repeat support-checks and which comes equipped with our double-support
heuristic as its domain-heuristic.



Chapter 8

Conclusions and Recommendations

8.1 Introduction

In this thesis we have studied algorithms to solve problems occurring in the areas of Constraint
Satisfaction and Grobner Basis Theory. We have pointed out relationships between on the one
hand notions in Geometry and Grobner Basis Theory and on the other notions in Constraint
Satisfaction Theory, we have studied domain-heuristics for arc-consistency algorithms, and we
have generalised the chronological backtracking algorithm.

8.2 Grobner Bases

8.2.1 Conclusion

It is a well known fact that varieties are in one-to-one correspondence with certain kinds of
ideals. An important observation that we have made is that finite constraints are in one-to-one
correspondence with certain kinds of varieties. Constraints are therefore in one-to-one corre-
spondence with certain kinds of ideals.

The relationship between constraints and ideals, allows for the application of algorithms
from Ideal Theory in general and Grobner Basis Theory in particul&@ses. To apply these
algorithms we translate@SPto a generating set of a polynomial ideal, apply the algorithm from
ideal theory, and translate back t€&P.

We have presented an algorithm to compO&s in directionally solved form. The general
construction is as follows. Given an input constraint satisfaction problem (X, D,C') we
compute a generating set of the unique radical idealk[X] whose variety is equal to the solu-
tion set ofC. Next, we compute the reduced Grobner basisf 7 with respect to a lexicograph-
ical term order< and transfornti to a constraint satisfaction problethwhich is equivalent to

C. If G = {1} then the originaCSPis unsatisfiable and we sétto ( X, D, { Clay } ), where

x s the least significant variable &f with respect to< anngx = (). Otherwise, we set’ to
the empty set and for every polynomialGhwith variablesS C X we add a constrairt’y to C’

121
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which is equal to the intersection of the Cartesian product of the domains of the variables in
and the common zeros of the polynomialgirwhose variables are equal $o

The algorithm heavily depends on properties of Grébner bases of ideals with respect to lex-
icographical term orders. Ik is a lexicographical term order such that< z; if and only if
i < j,then a Grobner bas of an ideall C k[xq, ..., z,] with respect to< contains a generat-
ing set of the elimination idedl[z4, ..., z,,]) NI, for1 < m < n. If I is zero-dimensional then
G contains a polynomial whose leading term with respeet te equal tar;, for 1 <i < nand
a; > 0. This in its turn guarantees that all common zerog(of, . . ., z,,_1] N I can be extended
to all common zeros of[z, ..., z,,] NI, for1 < m < 2. The construction ensures tltaandC’
are equivalent. The properties of the Grobner basis ensuré'tlsain directionally solved form
with respect to<.

With a minor change, the algorithm can also be used to com@®E which are solved with
respect to all elimination orders.

8.2.2 Recommendations

The view of constraints as varieties allowed for the application of algorithms from Grobner basis
theory. The application of these algorithms is motivated by properties of elimination ideals
I N k[S] whose common zeros are the projections of the solutions of the @pBtonto the
variables inS. This resulted in a better insight into the relationship betwe&®s and these
ideals.

It should be interesting to investigate such relationships further. In particular, it should be
interesting to investigate the relationship between Grobner liaseth respect to term orders
which are not necessarily lexicographical and the varieties (constraints) of subSetB@thaps,
this may lead to more general consistency and search algorithms.

8.3 Arc-Consistency

8.3.1 Conclusion

We have studied existing and new arc-consistency algorithms for b@@rg. We have—for

the first time—presented experimental and theoretical results which clearly indicate that do-
main-heuristics can influence the performance of arc-consistency algorithms. We have devel-
oped a new domain-heuristic which has proved itself superior to other existing heuristics both in
an experimental and in a theoretical setting. The domain-heuristic is a double-support heuristic.
It seeks to maximise the number of values for which it can find support per support-check. We
observed that it is necessary to maximise the number of values for which new support is found
per check in order to minimise the total number of checks.

We have used the double-support heuristic to create a novel arc-consistency algorithm for
binaryCSPs. The algorithm is a cross-breed betw@€n3 andDEE. It maintains the worst-case
time-complexity and space-complexity AC-3. Our experimental results suggest that despite
the fact that the hybrid repeats support-checks it is more efficient than the current state-of-the-art
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algorithms which do not repeat support-checks. At the expense of a worse space-complexity
and with minor changes the algorithm can be turned into an algorithm which remembers sup-
port-checks so as to avoid repeating them. With this improvement the algorithm should perform
even better.

Arc-consistency algorithms which do not repeat support-checks all have the same worst-case
time-complexity. It is only by studying the average time-complexity of such algorithms that
the best such algorithm can be identified. Good arc-consistency algorithms have to be good on
average.

Prompted by the success of the new double-support heuristic, we have studied its average
time-complexity and that of a lexicographical domain-heuristic for the case where there are only
two variables in theCSP. The main results of the time-complexity analysis are two-fold. The
first result is that lexicographical heuristic is about two times less efficient on average than the
double-support heuristic for sufficiently large domain sizes. A second result is that the dou-
ble-support heuristic is nearly optimal for sufficiently large domain sizes; should better heuris-
tics exist then they can only be “marginally” better. We have discussed the consequences of the
decision to study-variableCSPs. Our informal discussion suggests that we can probably study
domain-heuristics by studyirgyvariableCSPs.

8.3.2 Recommendations

It should be interesting to implement an efficient arc-consistency algorithm which uses the dou-
ble-support heuristic and does not repeat support-checks, and to compare it AGaihsthe
average-case time-complexity analysis of the lexicographical and the double-support heuristic
have provided insight into necessary properties of good arc-consistency algorithms for the case
when there are two variables in tlsSP. These results should be generalised for the case when
there are more variables in ti@&&SP. Many consistency algorithms use underlying lexicograph-
ical domain-heuristics. The notion of a double-support check for arc-consistency algorithms
(2-consistency algorithms) may have a generalisatiortfoonsistency algorithms. It should be
interesting to study such generalisations. If they exist, they may bring higher-order consistency
algorithms into the realm of feasibility.

8.4 Generalised Backtracking

8.4.1 Conclusion

As laid out before, constraints are in essence varieties, i.e. constraints are geometrical objects
which, in their turn, correspond to certain kinds of polynomial ideals. This suggests that con-
straints have “degrees” similar to the (total) degrees of polynomials. We have provided a defini-
tion of the degree of a set of variables in a constraint and provided an algorithm which uses this
notion to partition constraints in a way which is reminiscent to factorisations of polynomials.

We have presented Proposition 5.5 which states tl@&f i a constraint, if is a cover olC,
and ifC = (X, D,C") isaCSPsuch thatCs € C, then the solutions af are equal to the union
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of the solutions of the members 6t X, D, {c} U (C\ {Cs})) : ¢ € k }. Since partitions are
covers, the proposition also applies to partitions.

We have shown that at the lowest level, backtracking implicitly uses the proposition for a
unary constraint’s (the domain of the current variable) and for the unique maximal partition
of Cs. Partitions are called linear if their members are linear. Maximal partitions of unary
constraints are linear. The (local) branching factor of chronological backtrack search is equal to
the cardinality of the linear partition of @nary constraint (the domain of the current variable).

We have generalised this notion of branching factor to thatgefreeralised branching factdgthe
cardinality) of a linear partition ofny constraint.

We have used our insight into the properties of linear partitions to construct a generalisation
of the chronological backtracking algorithm. It is a generalisation in the sense that it can use
Proposition 5.5 foanykind of constraintC's.

The use of a linear partition, of an arc-consistent binary constraint in generalised back-
track search is similar to the use of the linear partitiprof a unary constraint in chronological
backtrack search. In chronological backtrack search, the memberadé in one-to-one corre-
spondence with the branches of the current node in the search tree and each memteaaif
branch) allows for the elimination of the current variable. In generalised backtrack search, the
members ofr, are in one-to-one correspondence with the branches of the current node in the
search tree and each memberrpf{each branch in the search tree) allows for the elimination of
a variable.

We have presented a function which maps a binary arc-consistent constraint to a
linear partition7 of C,,; such that the generalised branching factorrofioes not exceed
min(|D(x)|, |D(y)|) but may be smaller. With the use of this function, generalised backtrack-
ing can always obtain the same generalised backtracking factor as chronological backtracking
and may obtain smaller generalised branching factors. Indeed, the application of the generalised
backtracking algorithm to some large problems from the literature demonstrated that a significant
reduction of the generalised branching factor can be obtained.

8.4.2 Recommendations

We have presented a few results of the application of a toy implementation of the generalised
backtracking algorithm to some large problems from the literature. To investigate the usefulness
of the generalised backtracking approach it is necessary to implement a version that attempts to
minimise the number of support-checks. The performance of this algorithm should be compared
empirically against other backtrack variants for a vast range of problems. The empirical investi-
gation should be complemented by a theoretical evaluation of the efficiency of these algorithms.
The empirical and theoretical comparisons should consist of comparisons of the average number
of support-checks that are required for the different algorithms and comparisons of the average
generalised branching factor.
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